
Information Substrates: Interacting with Digital Matter
Michel Beaudouin-Lafon

Université Paris-Saclay, CNRS, Inria
F-91400 Orsay, France

mbl@lri.fr

ABSTRACT
This paper introduces the concepts of information substrate
for organizing digital information and interaction instruments
for manipulating these substrates. We present Stratify, a proof-
of-concept implementation that combines a data-reactive ap-
proach to specify relationships among digital objects with a
functional-reactive approach to handle agency, including user
interaction. This unique combination makes it possible to cre-
ate rich information substrates that can be freely inspected and
modified, as well as interaction instruments that are decoupled
from the objects they interact with, making it possible to use
instruments with objects they were not designed for. We illus-
trate the flexibility of the approach with a number of examples
and present directions for future work.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
Conceptual model, Information substrates, Instrumental
interaction

INTRODUCTION
Today’s computer interfaces are based on principles and con-
ceptual models created in the late seventies. The Xerox
Star [16], which pioneered today’s graphical user interfaces
(GUIs), was designed for executive secretaries to carry out
office tasks. Thirty-five years later, computers come in many
forms and are used for a wide range of tasks by a wide variety
of users, yet their interfaces are still based on applications, doc-
uments, files and folders, with the same menus, buttons and
dialog boxes and the same input devices as the early systems.
Other forms of interaction, such as virtual reality, augmented
reality and voice-based interfaces, have not replaced GUIs,
except in some niche markets. Multitouch interfaces, designed
for smartphones and tablets, are based on the same funda-
mental assumptions and basic interaction principles as GUIs.
Similarly, web-based applications, while enabling a new cate-
gory of applications, tend to resemble desktop applications.

Technical report
© 2017, Copyright held by the authors.

Desktop, web and mobile apps are all trapped in the same
application-centric model: each is designed for a single user,
on a single device, with pre-defined tools to accomplish pre-
defined tasks, such as editing a single document or posting a
comment to a single social network. We identify three major
issues with this model:

Walled gardens – Applications bundle together a set of tools
for manipulating a particular type of content, stored in a propri-
etary format that can often be read only by the application that
created it. Changing applications requires converting––and
sometimes re-creating––documents. This lack of interoper-
ability limits users to the application’s tools, creating a walled
garden around each application.

Information silos – Documents, and digital information in
general, is more and more often trapped in the cloud, which
arbitrarily insulates related pieces of content from each other
and from users. Users no longer own their data and can no
longer use the familiar file system to organize information.

Single-user, single device – Few applications support multi-
ple, simultaneous users. Social networking apps and multiuser
games offer limited forms of sharing, and dedicated web-based
editors, such as Google Docs, are not interoperable with the
single-user editors that users are familiar with. Although we
commonly access on-line information via a variety of devices,
these remain largely ignorant of each other. Distributed inter-
faces, such as when a smartphone controls a slide presentation
on a laptop, are limited to predefined situations and often
require a complex setup.

In contrast, the real world has no “applications”1: We use
objects and tools carefully chosen for each specific task and
we fluidly design and redesign our workspaces to adapt to the
activity at hand. We engage in multiple projects and activities
that require keeping together and assembling diverse, often
inter-related digital artifacts.

The time has come to break out of the walled gardens and
information silos created by the app-centric approach and to
revisit the fundamental principles that underlie interactive soft-
ware and digital information. The ability to share documents
in real time, to distribute content and tools across devices,
and to flexibly manage one’s digital environment must be
deeply embedded within the infrastructure, as an integral part
of the fabric of the digital world. Addressing these limitations
requires a paradigm shift, with a focus on two properties:

1Interestingly, the Xerox Star had no “applications” either.

1

Flexibility – Users must have choices: They must be able to
use different tools to achieve goals in different ways, to work
alone or collaboratively, to select one device over another, to
configure their environments to support their favorite features,
and to create several such configurations.

Extensibility – Systems must be open and interoperable: Users
must be able to add features when they need them, rather than
being subjected to the release cycles imposed by vendors.
Third parties must be able to provide new features as well as
alternative interactions for existing features. Users must be
able to create their own extensions and reconfigurations and
share them with others.

This paper introduces the concept of information substrate to
organize digital information, and builds on instrumental inter-
action [1] to interact with these substrates. We then present
Stratify, a proof-of-concept implementation of this conceptual
model. Stratify combines a data-reactive approach to specify
relationships among digital objects with a functional-reactive
approach to handle agency, including user interaction. This
combination makes it possible to create rich information sub-
strates that can be freely inspected and modified, as well as
interaction instruments that are decoupled from the objects
they interact with, making it possible to use instruments with
objects they were not designed for. We illustrate the flexibility
of the approach with a number of examples, review related
work and conclude with directions for future work.

MOTIVATION
Our goal is to create interactive systems based on a deep under-
standing of human skills, not on concepts and techniques that
are convenient for computers. We want to create digital matter
that, like physical matter, is comprehensible and appropriable
by normal people, not just computer experts.

From affordances to information substrates
According to J. Gibson [10], affordances are properties of an
object that enable specific actions by animals and humans.
When perceived, they provide a natural way of understanding
the capabilities of the environment. E. Gibson [9] studied the
process of perceptual learning, in which children and adults
learn to recognize affordances throughout life.

In order to build on these concepts, a digital object’s capabil-
ities should be perceivable—directly or through appropriate
instruments—and those perceived qualities should correspond
to the object’s actual capabilities. For example, any piece
of text should be selectable so it can be copy-pasted. In the
physical world, we observe objects at various levels of detail
to infer their capabilities. We recognize their material, shape,
structure, and relationship to other objects, which is crucial
when appropriating them for novel uses. For example, we
know that a chair is heavy enough to prop open a door. If we
are to take full advantage of affordances in the digital world,
we need to support such multilevel representations.

The concept of information substrate is meant to operational-
ize affordances in the digital world. A substrate is a unified
construct that holds digital information together with its con-
straints and relationships. A substrate can use information

Table
Enter values

Graph
Set type

Shapes Set color

Pixels
Paint

A B
1

2
3

14
17

19

23
17

20

`123|

Figure 1. A stack of substrates and associated instruments

from, and provide information to other substrates. A collec-
tion of substrates creates a rich form of digital matter.

Figure 1 shows a data table substrate holding information that
may come, e.g., from a sensor, with a new entry being added
for each reading. The table can compute, e.g., the running
average of the measures, and provide this information to a
graphing substrate to plot it. The graph is a substrate that rep-
resents its input data as a set of graphical shapes. These shapes
constitute yet another substrate, which a canvas substrate rep-
resents as a set of pixels displayed on the screen. The graph
that the user sees on the screen is therefore a composition of
four substrates: the data table, the graph, the graphical shapes
and the pixels. Each level has its own properties, capabilities,
and affordances. Different instruments can operate at each
level (Figure 1, right) to add data to the table, change the type
of graph, set the color of the bars, or edit the pixels to draw
annotations. By letting the user interact at these different lev-
els, the conceptual model provides an unprecedented level of
flexibility. For example the color tool is also expected to work
with a text substrate or a brush.

From human tool use to instruments
Humans are the only species that not only uses tools, but also
creates new ones. When a person holds a tool, it becomes
an extension of her body schema, as if it were a part of the
body [19]. Holding a tool thus redefines the affordances of the
environment, since it changes the person’s capabilities. This
provides a psychologically and cognitively sound basis for cre-
ating extensible systems, where new digital tools create new
affordances. Osiurak [30, 31] suggests that tool use involves
technical reasoning, a specific type of reasoning that comple-
ments the direct perception of what the tool can do. Technical
reasoning is based on abstract technical laws, which, unlike
skills acquired through procedural learning, do not require
constant reinforcement. For example, people do not forget
how to ride a bike, even after many years without practice,
but commonly forget simple procedures, such as changing
the time on a digital clock. Technical reasoning also supports
appropriation based on the properties of physical tools, such
as when we use a knife blade as a screwdriver.

Most interactive software systems are designed to require
procedural knowledge instead of technical reasoning, which

2

renders software tools difficult to learn, remember and master.
Software tools are trapped within applications and inconsis-
tent across applications, making them arbitrarily different and
difficult to use in unexpected ways.

Our goal is to create digital tools, called instruments, that ex-
tend the body schema and rely on technical reasoning in the
same way as physical tools. Instruments should be applica-
ble to any substrate that presents appropriate data. Such an
environment supports flexible and consistent tool use, where
tools can be reused across domains and where users can reason
about the effects of applying a tool in different situations.

THE SUBSTRATES CONCEPTUAL MODEL
In the physical world, objects are made of materials that have
properties: mechanical, chemical, optical, etc. Moreover,
human-made physical objects are also designed for a purpose:
sheets of paper, for example are designed to be written on
by pencils, pens and brushes. Physical objects are therefore
polymorphic: they can be used for what they are made of, e.g.,
a sheet of paper can be used to start a fire because paper is
highly flammable, or to level a table because it can be folded
easily; Objects can also be used for what they were made for,
e.g., a sheet of paper can be used to take notes or to make a
drawing. Humans learn these affordances through a number of
means, from perceptual learning [9] to cultural transmission.

Such polymorphism rarely exists with digital objects, which
are usually reduced to their functional role. For example, an
image editor manipulates pixels. Even if the pixels happen
to represent characters, they cannot be manipulated as text.
The windows in a traditional window manager are rectangles,
but cannot be manipulated, e.g., rotated, distorted or aligned,
as the shapes in a drawing editor. To make digital objects
polymorphic, we introduce information substrates.

Information Substrates
The goal of an information substrate is to explicitly represent
different levels of representation of a digital object and main-
tain consistency among them, so that the object can be used
for what it is made for as well as for what it is made of.

The term substrate is used in many areas including geology,
biology, chemistry, materials science and printing, each with
different nuances. The general definition is “a substance or
layer that underlies something, or on which some process oc-
curs”. For example, biological substrates provide the surface
on which an organism lives. In material science, a substrate is
the material on which a process is conducted, and in printing,
it serves as the base material that images are printed on. These
definitions resonate with the need to provide context and con-
straints to interpret digital information and give it different
capabilities.

Pixel substrates – This paper focuses on visual interfaces
where digital information is depicted primarily on bitmapped
displays. Since we receive visual stimuli through an array of
pixels, the highest level of representation of digital information
is a set of pixels2. We call these pixel substrates. Conceptually,
2We place levels of representations “closer” to human perception,
e.g., pixels, higher than those closer to machine representations

they are 2D arrays of pixels, each representing a color. The
same approach can be applied to other ways of perceiving
digital objects, including tactile, kinesthetic and auditory.

Geometrical substrates – Of course, we rarely perceive pixels
as such, but instead perceive shapes, images, text and other
structured objects. Conversely, the computer typically only
manipulates pixels at the last stage of its rendering pipeline,
when “objects” such as text, shapes and images are turned into
pixels. The next level of representation of a visual interface is
therefore made of structured graphics, where geometrical ob-
jects are laid out according to layout constraints. We call these
geometrical substrates to emphasize the geometrical nature
of both the objects that populate it and of the layout con-
traints, such as alignment and containment. Scene graphs [34],
HTML3 and SVG4 are examples of such substrates.

Structural substrates – While a geometrical substrate can be
simply a representation of itself, for example a static web page
or a hand drawing, the shapes it contains are often representa-
tions of “deeper” objects. In GUIs, these include the widgets
such as buttons and menus, and the objects of the “model” of
the application. In the Model-View-Controller pattern [22],
model objects are often opaque and ad hoc. By contrast, we
want to expose their structure and inner properties so that they
can be manipulated in different ways. Since at this level of
analysis, many objects are containers of other objects, we call
them structural substrates.

A very common container is the sequence: a photo editor
manages a stack of layers, a drawing editor a list of shapes, a
window manager a set of windows, a menu a list of items. Yet
each of these applications represents the sequence differently.
By exposing their common structure, we open the door to
alternative representations and manipulations. For example, a
light table can be used to lay out the content of any sequence,
letting users organize it as they see fit. The layers of the image
editor can then be viewable separately instead of superposed,
the windows of the window manager can be spread out as in
Apple Mac OS X Exposé instead of overlapping each other.
Alternatively, a sequence can be represented as a linear list of
names or icons: we get a list of layers, a list of window titles,
and the familiar linear menu.

Other common structures include trees, graphs and tables,
which can be mapped to well-known representations such
as indented lists for trees, node-link diagrams or matrices for
graphs, grids for tables, or more specialized ones when needed.
Structural substrates can be nested and can be heterogeneous:
a table may contain a tree in one cell, and an image in another.

Structural substrates can also be mapped onto one another in
order to provide alternative representations. This is a different
from containment. For example, a sequence can represent
the leaves of a tree, or the sorted version of another sequence.
Combining such mappings makes it easier to reuse higher-
level representations, such as using the light table described
above to display the content of a tree, or displaying a list of
window titles in alphabetic order.
3https://www.w3.org/html/
4https://www.w3.org/Graphics/SVG/

3

https://www.w3.org/html/
https://www.w3.org/Graphics/SVG/

pixels

geometrical

structure

data source

pixels

geometrical

structure

data source

pixels

geometrical

structure

data sourcea b c

Figure 2. Update process when (a) a data substrate changes, (b) handing
off an action at a lower level and (c) relaying an action. Substrates are
in blue, with blue arrows depicting their source. Actions are in red, with
the original action that caused the handoff in pink. Dotted purple arrows
represent the update of dependencies.

Data – Structural substrates must eventually contain actual
data. Data often comes from external sources, such as the
content of a file or database, a sensor or a network service,
and can therefore be dynamic. Since they often depend on a
source, like other substrates, we call them data substrates. As
new data is provided by the source of the data substrate, the
higher-level substrates that depend on it update, all the way to
the pixel substrate (Fig. 2a).

The conceptual model emerging from this analysis is that
digital matter is made of a combination of substrates, linked
together to maintain their consistency. Higher-level substrates
are representations of lower-level ones, creating a fully in-
spectable stack of representations. The sources of a substrate
are the substrates it depends on, i.e. those that it represents.
New representations can be created dynamically, at any level,
making it possible to address an object at different levels of
representation. The ability to combine existing substrates in
different ways supports flexibility: Users are not bound to the
choices made by the designers and programmers. The fact
that substrates can be inspected and interoperate supports ex-
tensibility: New representations, new data sources and new
substrates can be injected into existing systems.

Agency
Information substrates let us represent digital information in a
rich, polymorphic manner. They react to changes in their data
sources to maintain consistency, but the network of dependen-
cies is static. To modify substrates and their relationships, we
need to provide a model for how user actions are interpreted
and carried out by the system. We call (system) agency the
way substrates express and enact actions.

Users only perceive the surface-level representations of the
substrate stack, i.e. the pixel substrate in a visual interface.
User actions expressed at this level, such as pointing and drag-
ging, must be interpreted and handed off to lower levels so
they can be addressed at the appropriate level of representation.
For example, moving the icon of a file within a window does
not affect the file system, and can be interpreted by the geo-
metrical substrate. But moving a file icon from one window
to another requires changing the location of the file in the file
system, and must be handed off all the way down to the data
substrate, which will interpret it as a file system operation. Of
course, users should not be aware of these details.

Interaction protocols – In order to decouple the two aspects
of agency, expressing and enacting actions, we introduce in-
teraction protocols. The substrate emitting an action is its
origin, the one enacting it is the target. An interaction proto-
col describes if and how a particular action, e.g., dragging, is
turned into one or more operations on the target, e.g., moving
it. Note that actions can be specified at any level of abstraction,
not just at the user level as in this example. For example, a
substrate can issue a sorting action to change the sorting order
of a structural substrate.

When the target of an action has no matching protocol, the
action is handed off to its source, down the stack of representa-
tions, unless the target blocks the action. This is how changing
the name of a file is handed off all the way down to the data
substrate representing the file, whereas moving a file icon
within a window is handed off only to the geometrical sub-
strate. When a target substrate enacts an action and changes
its state, the higher-level substrates update to maintain consis-
tency with the new state (Fig. 2b). This process is similar to
the update that occurs when a data source changes, except that
it does not start at the bottom of the stack of substrates.

Blocking and relaying actions – However, enacting an action
at a certain level of representation does not necessarily –and
cannot always– change its substrate directly. Indeed, many
properties of a substrate depend on their source and should not
be changed directly by the programmer. For example, consider
a shape in a geometrical substrate whose color is linked to the
“temperature” property of its source data substrate. A coloring
action on the shape should be blocked not because it is not
possible to change the color of the shape, but because it is
bound by a dependency on the underlying data substrate.

Now consider the shape representing the minutes hand of an
analog clock, whose angle depends on the “minutes” property
of the time source displayed by the clock. To change the
time by turning the clock’s hand, the hand must provide an
interaction protocol for the drag action. Instead of interpreting
this drag operation as a change of the angle of the shape, it
interprets it as a change of the number of minutes of its source,
and issues the corresponding action to the source. We call this
relaying an action (Fig. 2c). Assuming the time source accepts
the action, it will update its state, which will update the analog
clock –as well as any other representation it may have. If it
blocks the action, dragging the hand will have no effect.

Forced actions – We can also let users experiment and take
risks by forcing some dependencies, in the same way as we
sometimes misuse a physical object on purpose. For safety,
this should be enabled only in a user-controlled mode. In this
mode, the user can bypass the blocking of actions and force
the assignment of a property, even though it is dependent on a
source substrate. For example, the user could force the change
of color of the shape representing the temperature, breaking
the representational link with the source temperature. In the
clock example, the user could move the hand anywhere on the
screen, breaking the layout of the clock. Since it is the angle
of the hand that is linked to the time source, the moved hand
would nevertheless continue to turn and reflect the time.

4

In summary, the ability to interact with different levels of
interpretation of an object relies on two concepts:
1. Interaction protocols to find the level of interpretation at

which the intended action makes sense; and
2. Interpretation of concrete actions, such as moving the clock

hand, into lower-level ones, such as updating the time, to tra-
verse the abstraction layers between successive substrates.

These two mechanisms ensure that all levels of representation
of a digital object are potentially exposed and available for
interaction, providing both flexibility and extensibility. Flex-
ibility comes from the ability to reuse existing interactions
and protocols, while extensibility comes from the ability to
create new ones that can interoperate with existing ones. In
addition, the reification of actions into first class objects makes
it possible to reuse them and to support undo.

In order to take full advantage of these properties, designers
should strive to create substrates that are as open as possible to
incoming actions by defining appropriate protocols, e.g., mak-
ing any text editable. Designers should also decompose com-
plex substrates into simpler, more generic ones, to facilitate
reuse and encourage recombinations. For example, creating a
separate substrate to sort a sequence makes it possible to, e.g.,
insert a filter.

Instruments
After describing system agency, we turn to the user side of
agency. In the physical world, we act on objects directly, e.g.,
folding a sheet of paper, or through tools, e.g., writing on a
piece of paper. Using an object as a tool is the result of a
dual process [4]: Instrumentation is the process by which the
user adapts to the tool and the resulting extension of the body
schema: the tool becomes an extension of the user’s body and
augments its capabilities; Instrumentalization is the process
by which an artifact is turned into a tool, possibly through
adaptation, once the user has determined that the artifact has
the required properties for the task at hand. Mackay [23]
describes the more general co-adaptation phenomenon, by
which users both adapt and adapt to technology.

While co-adaption is common in the physical world, digital
tools can often be used only for what they were designed
for. Limited forms of instrumentalization exist, e.g., when
creating a rectangle in a drawing tool to measure and duplicate
the spacing between two objects. By exposing the various
levels of representation of digital information and supporting a
flexible model of system agency with the notion of instrument,
we can support more general forms of co-adaptation.

An instrument is a substrate capable of agency, directly or
indirectly controlled by user input. We start by modeling input
devices as data substrates. For example, a mouse provides
data about its movements and the state of its buttons, and con-
trols the position of a cursor, whereas a touch screen provides
information about touch points. Input devices emit actions
that represent basic motor actions such as click, drag or pinch.
The targets of these actions are one or more instruments, i.e.
substrates that feature a protocol for these actions. Instruments
typically transform these actions into higher-level actions, e.g.,
a sequence of button down, mouse moves and button up into a

move action. They also determine which target(s) should re-
ceive these actions. For example, many mouse or touch actions
apply to the object at the position of the cursor or touch point.
The instrument must therefore query the various information
substrates to identify that object, which will typically become
the target of the output action of the instrument.

This model supports multiple simultaneous users, since multi-
ple input devices can be represented, each triggering its own
actions. Of course, substrates must be prepared to enact si-
multaneous user actions, or combine them together, or block
them. This model also supports distributed interaction: the
device and some substrates can reside on one machine, and
the actions can be sent across the network to a remote target.
For example, a mobile device may provide a color palette and
a touch area to control a cursor on a desktop display. Moving
the cursor and tapping a color sends the action to the desktop
computer, which decides if the action can be applied. Another
user can interact in parallel with another mobile device.

Designers should strive to create instruments usable with dif-
ferent types of substrates, e.g., to edit basic data types such
as text, numbers, colors and fonts, or to move and transform
shapes. The same instrument should let a user rotate a graphi-
cal shape in a drawing editor, a window in a window manager
or a bar in a histogram. Generic instruments also include those
for manipulating structured substrates, such as sorting and
filtering sequences and tables, or creating new substrates that
map these structures to other structures and the content of
these structures to visual elements. For example, a histogram
instrument creates a sequence substrate whose content is a set
of geometric shapes bound to another sequence containing the
values to be displayed. Other examples include instruments
for annotating substrates, adding metadata and searching.

Instruments provide the user side of flexibility and extensibil-
ity: well-designed instruments are polymorphic [2] and can be
used with different types of substrates, even if they were not
designed for them; Users can replace instruments, e.g., to use
their preferred color picker, and add new instruments, e.g., an
advanced tool to align and distribute objects [5].

PROOF OF CONCEPT: Stratify
Stratify is a proof-of-concept prototype that we have devel-
oped to demonstrate and experiment with the concepts of
information substrates and interaction instruments. It is a
web-based framework that runs in any modern web browser.

Stratify leverages the web environment and the Javascript
language in several ways. It builds heavily on features of
Javascript, including its prototype-based object-oriented model
as well as meta-programming capabilities such as redefining a
property by a pair of functions for getting and setting its value.
It uses the DOM5, the in-memory representation of the content
of a page, as geometrical substrates for both HTML content,
for document layout, and SVG content, for vector graphics.
As a result, the pixel substrate is managed by the web browser
and is not accessible. We leave it to future work to create a
pixel substrate based on, e.g., the HTML5 Canvas or WebGL.

5Or rather the Inferno virtual DOM: https://infernojs.org/

5

https://infernojs.org/

1 class AtomicClock extends DataSource {
2 constructor () {
3 super();
4 this.ms = Date.now();
5 // update the millisecond counter every second
6 setTimeout(() => this.ms += 1000, 1000);
7 }
8 }
9

10 class Time extends Substrate {
11 // ‘get’ declares a computed property
12 get date() {return new Date(this.source.ms)}
13 get hours() {return this.date.getHours()}
14 get minutes() {return this.date.getMinutes()}
15 get seconds() {return this.date.getSeconds()}
16 }
17

18 class AnalogClock extends SVGSubstrate {
19 get hoursAngle() {return (this.source.hours + this.source.

minutes/60) * 30)}
20 get minutesAngle() {return this.source.minutes*6)}
21 get secondsAngle() {return this.source.seconds*6)}
22 get SVG() {
23 // return 3 SVG lines rotated by the corresponding angles
24 }
25 }
26

27 // create an AtomicClock, make it the source of a Time object,
28 // and make that object the source of an AnalogClock
29 new AnalogClock(new Time(new AtomicClock()));

Listing 1. Programming a clock with Stratify

Substrates: Data-Reactive Programming
An information substrate in Stratify is a collection of objects
and properties linked by relationships. For example, an analog
clock is made of graphical shapes, the clock face and the
hands, linked to a time substrate, itself linked to a timer data
source. In order to manage these relationships in a declarative
way, we use a programming model that we call Data-Reactive
Programming (DRP), implemented with the mobx library6.

The central tenet of DRP is that objects expose their state as
a set of properties. Some of these properties are computed
from other properties of the same or other objects. These
computed properties can be read but not written by default.
Non-computed properties are internal properties: they be-
long to the object, and can be written directly. mobx ensures
that whenever the value of an internal property changes, the
computed properties that depend on it are recalculated7.

In case of dependency cycles, successive iterations are com-
puted until the values stabilize or a maximum number of iter-
ations is reached. In practice, assuming that computed prop-
erties only depend on source substrates, cycles rarely obtain
because sources normally form a tree or a DAG.

In the previous example, the hands of the analog clock are
shapes whose rotation angle is a computed property, calculated
from the time stored in the time substrate. The number of
hours, minutes and seconds of that substrate are themselves
properties computed from the timer data source. The counter

6https://mobx.js.org
7Only computed properties that are used by other properties are
recalculated, greatly optimizing updates.

1 // in class AnalogClock
2 set minutesAngle(a) {
3 this.source.minutes = Math.round(a/6);
4 }
5 // in class Time
6 set minutes(v) {
7 this.source.ms += (v − this.minutes)*60000;
8 }

Listing 2. Declaring setters for computed properties

held in the timer is an internal property whose value changes
every second. As a result, the analog clock constantly reflects
the current time, without any further programming (Listing 1).
If a textual rendering of the time substrate is managed by
another substrate, it too will be updated in real time.

The network of dependencies created by the computed prop-
erties resembles the formulas of a spreadsheet: changing the
value of a cell triggers a recalculation of all the formulas that
depend on it, updating their values. In Stratify, the cells are
not organized in a table but are arbitrary object properties.

While this computational model is not novel, we add a twist
that distinguishes it from other data-driven models. The pro-
grammer can define a setter for a computed value, i.e. what to
do when setting the value of a computed property. In the clock
example, to set the time by turning one of the hands, one must
define a setter for the minutesAngle property that calculates
the number of minutes based on the new angle and set the
minutes property of the source time accordingly (Listing 2,
lines 2–4). Since the time source depends on an AtomicClock
data source, we also need a setter for its minutes property, oth-
erwise nothing will happen (Listing 2, lines 6–8). That setter
will trigger an update of computed properties that depend on
it, i.e. the time and analog clock substrates.

Data-Reactive Programming provides a declarative model for
dependencies among objects and keeps them up to date at all
times, in a transparent and optimized way (thanks to the mobx
library). It supports updates of computed values, by requiring
the programmer to define setters that, in effect, compute an
inverse of the computed property in order to update the source
objects, which then propagate to all objects involved.

Note that this approach breaks traditional object-oriented pro-
gramming: usually, objects do not expose state directly, but
use methods that control access to their state. Stratify inten-
tionally exposes state and expects it to be changed directly
from outside. Objects can react to state changes either by
intercepting changes to an internal property in order to modify
or discard the change or trigger a side effect, or by observing
a computed or internal property to generate side effects.

Listing 3 is a collection of structural substrates that represent
sequences of objects. The base Sequence substrate is an array.
The Sorter, Filter and Mapper recompute their sequence on
the fly by sorting, filtering or mapping their source sequence.
They are used in Listing 4 to create a to-do list whose items are
sorted, filtered to eliminated the checked ones, and capitalized.

However, recomputing the entire sequence each time the
source changes in the Mapper may cause a problem because

6

https://mobx.js.org

1 class Sequence {
2 constructor(a) {
3 this.seq = [];
4 if (a) this.seq.replace(a);
5 }
6 }
7

8 class Sorter extends Substrate {
9 get seq() {

10 return this.source.seq.sort(this.compare)
11 }
12 constructor(source, compare) {
13 super(source);
14 this.compare = compare || defaultCompare;
15 }
16 }
17

18 class Filter // similar to Sorter using Array.filter
19 class Mapper // similar to Sorter using Array.map
20

21 class Mirror extends Substrate {
22 seqChange(change) {
23 // apply the change to this.seq, calling mirror for new items
24 }
25 constructor(source, mirror) {
26 super(source);
27 this.mirror = mirror; // mapping function
28 // create the mapped sequence
29 this.seq = source.seq.map(item => this.mirror(item));
30 // reflect changes to the source locally
31 intercept(source.seq, this.seqChange);
32 }
33 }

Listing 3. Structural substrates for sequences

the resulting objects are re-created each time. In the to-do
list example, a list of text strings is turned into a list of Todo
items by creating a substrate that holds the internal property
checked for each item. If the list of to-dos were recreated
each time the list of text strings changed, the checked state of
the items already in the list would be lost. By using a Mirror
substrate instead of a Mapper, only the items that are added or
changed are recomputed. Taking advantage of the observabil-
ity of state changes, the Mirror can intercept the changes to its
source sequence and mirror them in its internal sequence.

Data-Reactive Programming is well-suited to substrates be-
cause it forces the designer to identify and separate the multi-
ple levels of representation of an object, leading to collections
of highly reusable substrates. Each substrate typically depends
on a single source, and can be easily combined with other sub-
strates to create complex objects that are guaranteed to stay
consistent and that can be freely inspected and modified.

Agency: Functional-Reactive Programming
In order to implement agency and instruments, Stratify uses
another reactive paradigm called Functional Reactive Pro-
gramming (FRP). FRP describes computations over streams
of values called signals, which can be processed and combined
using a rich set of operators. For example, a mouse is a signal
that generates a new value every time it is moved or its buttons
are pushed. This signal can be filtered to send moves only
between a button down and a button up, and can be combined
with a keyboard signal to also send changes in modifier keys.

1 class Todo extends Substrate {
2 constructor(s) {
3 super(s);
4 this.checked = false;
5 }
6 }
7

8 // Create a substrate that sorts, filters and maps a todo list
9 let list = new Sequence([’sleep’, ’eat’, ’work’]);

10 let todos = new Mirror(list, a => new Todo(a));
11 let sorter = new Sorter(todos);
12 let filter = new Filter(sorter, a => !a.checked);
13 let upper = new Mapper(filter, a => capitalize(a.source));
14

15 // Changes to the list propagate immediately:
16 list.seq.push(’relax’);
17 todos.seq[2].checked = true;

Listing 4. A todo list based on sequences

Note that we cannot use DRP for programming agency as it has
no notion of time (updates are –conceptually– instantaneous).
Actions occur over time and therefore we need a model, such
as FRP, where time is explicit. Stratify uses the RxJS8 library.

Any substrate can be the origin and/or target of one or more
signals. Each signal is typed: it carries values called actions
with a type tag. In order for a target substrate to listen to
a signal, a protocol must be found that matches the signal
type to the target. Stratify implements several strategies to
match protocols. The simplest is to look up the protocol by
name in the target object and its prototypes. If the search fails,
it continues to the source (if any) of the target substrate. If
finding a protocol by name fails, a second search takes place
using the names and/or types of the target object properties.
For example, if a signal carries actions to set colors, the search
starts with the protocol name setColor. If this fails, a new
search starts for a property name that contains the word color
and that holds a color object. If this fails and the user is willing
to take risks, a last search is started for any property whose
value resembles a color.

This process operationalizes a critical aspect of interaction
with substrates: decoupling instruments from target substrates,
so that one can use instruments on targets even though they
were not explicitly designed to work with each other.

In Stratify, an instrument is a substrate that is the target of
an input device such as the mouse (Fig. 3). The instrument
processes the actions sent by the input device, and emits higher-
level actions on an output signal. The target of that signal
is the so-called object of interest of the interaction, i.e. the
substrate for which a protocol matching the signal was found.
The protocol instantiates an object that mediates the actions
of the instrument on the target object, in effect reifying the
interaction: When the interaction is over, the signal terminates
and the interaction object disappears. This design provides
tremendous flexibility by allowing new protocols matching
instruments to target substrates without modifying either of
them.

8http://reactivex.io

7

http://reactivex.io

atomicClock

time

textClock

analogClock

moveInstrument

mouse

moveProtocol

hand hand hand

Figure 3. Substrates and instruments in Stratify. Substrates are in blue
with their source indicated by a blue arrow. Protocols are in green, and
signals in red. The dotted arrows show the update of dependencies when
the move instrument rotates the clock hand.

Example: the Move instrument
Let us consider a generic, yet simple, instrument: the Move
instrument. It is operated by an input device substrate such
as the Mouse, and should work with any substrate that can be
moved or whose content can be moved, such as the graphical
shapes of a drawing canvas, the windows of a window manager,
the items of a to-do list or the tools in a palette.

The Move instrument (see Appendix) emits start, move and
stop actions in response to the signal coming from the mouse.
Each action carries an incremental offset as well as an offset
from the start of the move. Using the initial position of the
mouse, the Move instrument identifies the substrate at this po-
sition and probes it for a protocol called move. The search for
this protocol proceeds down the chain of sources of the target
substrates. If not found it goes up the enclosing substrates in
the geometrical substrate: if the original target was a text label
enclosed in a rectangular frame, the search proceeds to the
frame, and then its sources. If no protocol is found, the search
starts over along the same path, looking for substrates with a
position property whose value is a point (an object with an x
and a y property that are numbers).

Moving list items – When the user wants to move a to-do item
in a list, the first target is the HTML list item, and its source is
the Todo item. Neither knows the move protocol. The parent
of the list item is the HTML list, which does implement the
move protocol. The protocol therefore instantiates the object
that will represent the interaction. This interaction receives the
move actions through the Move instrument output signal, and
translates the vertical mouse movements into a change of the
relative position of the HTML list item. As a result, the visual
item moves vertically in response to the mouse movements.

At the end of the interaction, the HTML list needs to move
the to-do item within the source sequence. Since it has access
to the sequence, it could remove the item and insert it at the
proper position. However, it first probes the source for the
moveItem protocol, in case the source substrate implements
the move properly. The Sequence substrate implements this
protocol. The HTML list invokes it, resulting in an update

to the sequence of to-do items, immediately reflected in the
HTML representation, and in any other representation it may
have. Note that the above interaction works with any sequence
represented by an HTML list. We can use it to, for example,
reorder items in a menu or tools in a palette.

Moving shapes – The situation is simpler when applying the
move instrument to a shape in a drawing surface or to a window
in a window manager, because the move does not reorder
objects in a list. In this case, the protocol that is likely to
match is the search for a position property: the protocol simply
updates the position as it receives the move actions.

We implemented magnetic guidelines similar to Sticky-
Lines [5]: graphical objects can be attached to a StickyLine;
moving a StickyLine also moves the attached objects. A
StickyLine is a substrate that holds the sequence of shapes
attached to it. When the position of the StickyLine is changed,
an observer propagates the horizontal or vertical component of
the move (according to the type of StickyLine) to the positions
of the objects in the sequence, using the same move protocol
as the Move instrument. This illustrates a form of instrumen-
talization [4]: The StickyLine becomes an instrument.

Objects are attached to and detached from a StickyLine by
moving them close to or away from it. Since the StickyLines
are not part of the objects that are probed when the Move
instrument is looking for its target, we create a move protocol
that moves objects normally, but also checks if they are moving
close to or away from a StickyLine. When such transitions
occur, it sends attach/detach actions to the StickyLine. This
example illustrates how new behaviors can be added to existing
substrates without changing them. StickyLines are not limited
to aligning objects in a drawing surface. They work with any
substrate that matches the move protocol, or that has a position
property. Hence it is possible to align windows in a window
manager, icons in a file browser, etc.

We implemented two other tools: the Spacer and the Pusher.
The former is based on our observations of designers who
use the width of a graphical object as a “spacer” to control
object distribution. The latter is inspired by the physical world,
where one can push an object with another. Applying these
instruments to existing shapes turns them into spacers or push-
ers. Spacers bump into other objects and do not overlap them,
and other objects bump into spacers. Pushers push objects,
and other objects bump into pushers. Moving objects with
the Shift key depressed ignores these constraints. Spacers and
pushers are implemented in a similar way as StickyLines and
work with any object with an extent property, e.g., windows.

Other examples
We developed a number of prototypes with Stratify to experi-
ment and illustrate the power of substrates. We already men-
tioned the clock and the to-do list, implemented as a collection
of substrates supporting synchronized views and direct manip-
ulation using the Move instrument. We also implemented a
collection of polymorphic instruments, including:
● a TextEdit instrument to edit any text property of a sub-

strate or one of its sources, including the text labels of the
instruments themselves;

8

● a ColorPicker instrument to change the value of any color
property of a substrate or one of its sources;
● a Move instrument that can move shapes and reorder the

content of sequences, including tool palettes and to-do lists;
● a Delete tool to remove items in a sequence, including

shapes in a canvas, tools in a palette and windows; and
● a Select instrument to select a single item in a sequence,

including a tool in a palette, a shape in a canvas or an item
in a menu.

Canvas – The Canvas substrate holds graphical shapes. A
series of tools let the user create basic shapes and StickyLines,
move them and delete them. The pusher and spacer instru-
ments can be applied to any shape in the canvas. An AddTool
instrument lets users select a tool in the palette and add it to
the canvas, where it can be selected, illustrating the fact that
the canvas can hold objects other than simple graphical shapes.

Table – The Table substrate holds tabular data. Cells can hold
arbitrary substrates as long as they have a value property. The
table can also be connected to an input signal to receive data
from a live source and add it to the table.

We turn the table substrate into a spreadsheet by creating a
Formula substrate whose value is computed according to a for-
mula, editable with the TextEdit tool. Formulas can reference
the values of other cells through the function (row,col). The
Data-Reactive programming model ensures that the values of
formulas are automatically recomputed.

DataViz – The Histogram substrate takes a Sequence as source
and maps it to a sequence of rectangular shapes that can be
used as a source for a Canvas. The sequence being mapped
can be a row or column of the Table, providing immediate vi-
sualization of its content. Updating a table cell is immediately
reflected in the histogram.

The Resize tool can be used to change the size of any object
with an extent property. Histogram bars use a special resize
protocol to ensure that the height of the bar reflects the source
value. If the source value cannot be changed, e.g., it is a for-
mula of the spreadsheet rather than a simple value, the height
cannot be changed. This does not require any modification to
the Resize tool.

Window Manager – Each window of the Window Manager
(Fig. 4) can contain an arbitrary substrate, including a web
page, a clock, a to-do list, a canvas or a table. Windows can
be moved and deleted with the Move and Delete instruments.
StickyLines, pusher and spacer instruments can be applied to
windows, as in the canvas.

Sharing – To support sharing, we experimented with storing a
JSON representation of substrates in ShareDB9. Stratify uses
observers to send all substrate changes to ShareDB. Messages
from ShareDB are dispatched to the proper substrate to update
its state, maintaining consistency across replicas. Users can
thus share a collection of substrates in real time and interact
with them simultaneously. For example, one user can reorder
items in a to-do list while another is renaming them.

9https://github.com/share/sharedb

Figure 4. Window Manager substrate with a web page, a clock, a canvas,
and a StickyLine to align the windows horizontally.

Although instruments can be shared in this way as well, this is
not a good idea: Since a shared instrument is connected to a
different input devices at each site, the state of the instrument
will be inconsistent across sites, leading to erratic behavior.
Sharing the substrates manipulated by the instruments is there-
fore sufficient. To support awareness of other users, each user
should share a substrate that represents the user’s activity, such
as the real-time cursor position to create a telepointer.

For multi-device support, we experimented with the distribu-
tion of a set of substrates and instruments between a desktop
computer and a smartphone. For example, the desktop displays
a canvas and the smartphone a tool palette. The user can select
the tool on the smartphone and use it on the desktop. The
smartphone communicates with the desktop by relaying the
actions issued on the smartphone to a proxy of the instrument
on the desktop.

In summary, Stratify uses a combination of Data-Reactive and
Functional Reactive programming to implement the concep-
tual model of information substrates and interaction instru-
ments. The examples illustrate the power of the model and
how a small number of substrates and instruments can give
rise to a variety of use scenarios, demonstrating the flexibility
and extensibility of the resulting interactive systems. We now
compare this work to the state of the art.

RELATED WORK

Conceptual models
According to Norman [28], a conceptual model describes both
the designer’s mental model of the system and the mental
model created by users as they interact with the system over
time. Unfortunately we have no agreed-upon formalism to de-
scribe these models. Johnson & Henderson’s [15] conceptual
model is based on objects and operations, but remains very
high-level. Reality-Based Interfaces [14] promote leveraging
qualities of physical objects from the real world into the dig-
ital world, but do not propose a clear set of concepts, nor a
proof-of-concept implementation.

The Tokens+Constraints [35] conceptual model for tangible
interaction is closer to our work, as it is more precise, and can
serve as a basis for implementation. Our model builds on and
expands Instrumental Interaction [1] and the design principles
derived from it [2], with an emphasis on generative power:
the model helps imagine new solutions to design problems by
analyzing them in terms of substrates and instruments.

9

https://github.com/share/sharedb

Substrates in HCI
The notion of substrate has been used before in the context
of Human-Computer Interaction. Paper Substrates [8] let mu-
sic composers create complex pieces by linking and layering
pieces of interactive paper that represent and interpret digital
data. In particular, transparent paper substrates can be used
to interpret data visible through them. They are, in a sense, a
literal version of our layers of representation.

Graphical substrates [25] are mental models created by graphic
designers to represent their layout ideas. The authors observe
that digital tools do not support these constructs and present
several prototypes that address this gap. Like Paper Substrates,
these prototypes are good examples of novel substrates and
instruments that could be created with Stratify.

Webstrates [21] uses web technologies to implement shareable
dynamic media, sharing the DOM across multiple clients in
real time with ShareDB. Like our model, it uses interaction
instruments and blurs the distinction between applications and
documents. Unlike our model, it does not support multi-level
representations of digital information.

Finally, Repening [32] introduces AgentSheets as a “program-
ming substrate” for creating interactive learning environments.
This is quite different from our use of the term, although we
could certainly analyze AgentSheets with our model.

Interactive Environments
Over the years, many environments have been created to sup-
port flexibility and extensibility. Most are programming envi-
ronments targeted at developers rather than end-users. Alan
Kay talked of software as “clay” [18] and created environ-
ments such as Smalltalk [12]. More recently, Lively [13]
offers a similar approach, running in a web browser. While
we can envision a programming environment for Substrates,
this is not the primary goal of this work. Rather, we seek to
provide a conceptual model for designers and developers that
leads to more flexibility and extensibility for users.

Our work is closer in spirit to the Alternate Reality Kit [33],
where objects can be manipulated with other objects, based
on a physical metaphor. While we do not seek the same type
of literalism, we pursue a similar goal of facilitating the free
combination of objects through polymorphic tools.

Beyond interactive environments, a number of systems have
demonstrated the power of breaking out of the app model. For
examples, Buttons [24] let users encapsulate a piece of interac-
tive behavior in a configurable button that can be shared. Inter-
face attachments [29] augment existing applications, based on
their surface representations. Scotty [7] injects code into exist-
ing applications to augment or replace its features. Our work
seeks to create more open environments where such features
can easily be added, rather than relying on ad hoc solutions.

Finally, previous work has recognized the need to better sup-
port distributed interfaces and multi-user interaction. For ex-
ample, Recombinant Computing [27] emphasizes the need for
systems and services to be fluidly recombined even with very
limited knowledge of each other. We have a similar goal, even
though our approach is based on different concepts.

Software architectures
The dominant architectural pattern for interactive systems is
the Model-View-Controller (MVC) [22] and its variants. MVC
is based on the dichotomy between the world of the system
(the model) and the world of the user (the view). Our approach
is more powerful: a substrate can be both a view (represent
another substrate) and a model (be represented by another
substrate). MVC also does not reify interaction, unlike our
instruments and interaction protocols.

Interactive systems are usually programmed with events and
listeners, but event-driven programming is notoriously error-
prone and hard to maintain [26]. Other approaches such as
functional reactive programming [36] and dataflow [6] are
powerful, but rarely used in current systems due to limited
toolkit support. Our combination of Functional and Data-
Reactive programming smoothly integrates with the host lan-
guage, making it easy to use. The use of computed values
rather than bidirectional constraints as in, e.g., ThingLab [3]
makes the behavior more predictable at the expense of hav-
ing to write some property setters. Compared with the many
data-binding frameworks for the web, such as React or Angu-
lar10, Stratify provides a more general reactive model well-
integrated with the language.

Finally, VIGO [20] operationalizes instruments into an archi-
tectural model and Shared Substance [11] introduced data-
oriented programming. Stratify builds on this previous work
and provides a novel unified model that combines substrates
and instruments as well as a sample implementation.

CONCLUSION
This paper introduces a conceptual model informed by how
humans interact in the world, with a much higher level of
flexibility and extensibility than current environments. In-
formation substrates represent rich digital “matter” by sup-
porting multiple, interdependent levels of representation of
digital information. Interaction instruments enable powerful
user and system agency by decoupling the sources of actions
from the way they are enacted by the target substrates. We
developed Stratify, a proof-of-concept implementation to vali-
date and experiment with this conceptual model. Stratify uses
Data-Reactive Programming which, combined with Functional
Reactive Programming, provides a powerful computational
model for static dependencies and dynamic changes. The col-
lection of prototypes we created demonstrates the power and
generality of this model.

Future work will continue to explore the conceptual model
by refining it and applying it to a wider range of interaction
styles. At the implementation level, we plan to experiment
with pixel substrates and better support persistence and multi-
user, multi-device interaction. In the longer term, we want to
create a full-fledged environment and test it in real settings in
order to explore its “adjacent possible” [17], to see how users
will adopt and appropriate it.

10https://facebook.github.io/react/, https://angularjs.org

10

https://facebook.github.io/react/
https://angularjs.org

ACKNOWLEDGMENTS
This work was partially supported by European Research
Council (ERC) grant n° 695464 ONE: Unified Principles of
Interaction.

REFERENCES
1. Michel Beaudouin-Lafon. 2000. Instrumental Interaction:

An Interaction Model for Designing post-WIMP User
Interfaces. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’00). ACM,
New York, NY, USA, 446–453. DOI:
http://dx.doi.org/10.1145/332040.332473

2. Michel Beaudouin-Lafon and Wendy E. Mackay. 2000.
Reification, Polymorphism and Reuse: Three Principles
for Designing Visual Interfaces. In Proceedings of the
Working Conference on Advanced Visual Interfaces (AVI
’00). ACM, New York, NY, USA, 102–109. DOI:
http://dx.doi.org/10.1145/345513.345267

3. Alan Borning. 1981. The Programming Language
Aspects of ThingLab, a Constraint-Oriented Simulation
Laboratory. ACM Trans. Program. Lang. Syst. 3, 4 (Oct.
1981), 353–387. DOI:
http://dx.doi.org/10.1145/357146.357147

4. Pascal Béguin and Pierre Rabardel. 2000. Designing for
instrument-mediated activity. 12 (2000), 173–190.

5. Marianela Ciolfi Felice, Nolwenn Maudet, Wendy E.
Mackay, and Michel Beaudouin-Lafon. 2016. Beyond
Snapping: Persistent, Tweakable Alignment and
Distribution with StickyLines. In Proceedings of the 29th
Annual Symposium on User Interface Software and
Technology (UIST ’16). ACM, New York, NY, USA,
133–144. DOI:
http://dx.doi.org/10.1145/2984511.2984577

6. Pierre Dragicevic and Jean-Daniel Fekete. 2001. Input
Device Selection and Interaction Configuration with
ICON. In People and Computers XV—Interaction without
Frontiers (HCI & IHM 2001). Springer, London, 543–558.
DOI:http://dx.doi.org/10.1007/978-1-4471-0353-0_34

7. James R. Eagan, Michel Beaudouin-Lafon, and Wendy E.
Mackay. 2011. Cracking the Cocoa Nut: User Interface
Programming at Runtime. In Proceedings of the 24th
Annual ACM Symposium on User Interface Software and
Technology (UIST ’11). ACM, New York, NY, USA,
225–234. DOI:
http://dx.doi.org/10.1145/2047196.2047226

8. Jérémie Garcia, Theophanis Tsandilas, Carlos Agon, and
Wendy Mackay. 2012. Interactive Paper Substrates to
Support Musical Creation. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’12). ACM, New York, NY, USA, 1825–1828. DOI:
http://dx.doi.org/10.1145/2207676.2208316

9. Eleanor Jack Gibson. 1969. Principles of Perceptual
Learning and Development. (1969).

10. James J Gibson. 1986. The Ecological Approach to Visual
Perception. Lawrence Erlbaum.

11. Tony Gjerlufsen, Clemens Nylandsted Klokmose, James
Eagan, Clément Pillias, and Michel Beaudouin-Lafon.
2011. Shared Substance: Developing Flexible
Multi-surface Applications. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’11). ACM, New York, NY, USA,
3383–3392. DOI:
http://dx.doi.org/10.1145/1978942.1979446

12. Adele Goldberg and David Robson. 1983. Smalltalk-80:
The Language and Its Implementation. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

13. Daniel Ingalls, Tim Felgentreff, Robert Hirschfeld,
Robert Krahn, Jens Lincke, Marko Röder, Antero
Taivalsaari, and Tommi Mikkonen. 2016. A World of
Active Objects for Work and Play: The First Ten Years of
Lively. Proceedings of the 2016 ACM International
Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (2016),
238–249. DOI:
http://dx.doi.org/10.1145/2986012.2986029

14. Robert J.K. Jacob, Audrey Girouard, Leanne M.
Hirshfield, Michael S. Horn, Orit Shaer, Erin Treacy
Solovey, and Jamie Zigelbaum. 2008. Reality-based
Interaction: A Framework for post-WIMP Interfaces. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’08). ACM, New
York, NY, USA, 201–210. DOI:
http://dx.doi.org/10.1145/1357054.1357089

15. Jeff Johnson and Austin Henderson. 2011. Conceptual
Models: Core to Good Design. Morgan Claypool.

16. Jeff Johnson, Teresa L. Roberts, William Verplank,
David Canfield Smith, Charles H. Irby, Marian Beard,
and Kevin Mackey. 1989. The Xerox Star: A
Retrospective. Computer 22, 9 (1989), 11–26.

17. Steven Johnson. 2010. Where Good Ideas Come From:
The Natural History of Innovation. Riverhead Books.

18. Alan C. Kay. 1984. Computer Software. 251 (1984),
53–59.

19. Roberta L Klatzky, Brian MacWhinney, and Marlene
Behrmann. 2012. Embodiment, Ego-Space, and Action.
Psychology Press.

20. Clemens Nylandsted Klokmose and Michel
Beaudouin-Lafon. 2009. VIGO: Instrumental Interaction
in Multi-surface Environments. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’09). ACM, New York, NY, USA, 869–878.
DOI:http://dx.doi.org/10.1145/1518701.1518833

21. Clemens N. Klokmose, James R. Eagan, Siemen Baader,
Wendy Mackay, and Michel Beaudouin-Lafon. 2015.
Webstrates: Shareable Dynamic Media. In Proceedings of
the 28th Annual ACM Symposium on User Interface
Software & Technology (UIST ’15). ACM, New York,
NY, USA, 280–290. DOI:
http://dx.doi.org/10.1145/2807442.2807446

11

http://dx.doi.org/10.1145/332040.332473
http://dx.doi.org/10.1145/345513.345267
http://dx.doi.org/10.1145/357146.357147
http://dx.doi.org/10.1145/2984511.2984577
http://dx.doi.org/10.1007/978-1-4471-0353-0_34
http://dx.doi.org/10.1145/2047196.2047226
http://dx.doi.org/10.1145/2207676.2208316
http://dx.doi.org/10.1145/1978942.1979446
http://dx.doi.org/10.1145/2986012.2986029
http://dx.doi.org/10.1145/1357054.1357089
http://dx.doi.org/10.1145/1518701.1518833
http://dx.doi.org/10.1145/2807442.2807446

22. Glenn E. Krasner and Stephen T. Pope. 1988. A
Cookbook for Using the Model-view Controller User
Interface Paradigm in Smalltalk-80. J. Object Oriented
Program. 1, 3 (Aug. 1988), 26–49.
http://dl.acm.org/citation.cfm?id=50757.50759

23. Wendy E. Mackay. 2000. Responding to cognitive
overload: Co-adaptation between users and technology.
Intellectica 30 (Jan. 2000), 177–193.

24. Allan MacLean, Kathleen Carter, Lennart Lövstrand, and
Thomas Moran. 1990. User-tailorable Systems: Pressing
the Issues with Buttons. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’90). ACM, New York, NY, USA, 175–182. DOI:
http://dx.doi.org/10.1145/97243.97271

25. Nolwenn Maudet, Ghita Jalal, Philip Tchernavskij,
Wendy Mackay, and Michel Beaudouin-Lafon. 2017.
Beyond Grids: Interactive Graphical Substrates to
Structure Digital Layout. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems
(CHI ‘17). ACM, New York, NY, USA, 11 pages. To
appear.

26. Brad A. Myers. 1991. Separating Application Code from
Toolkits: Eliminating the Spaghetti of Call-backs. In
Proceedings of the 4th Annual ACM Symposium on User
Interface Software and Technology (UIST ’91). ACM,
New York, NY, USA, 211–220. DOI:
http://dx.doi.org/10.1145/120782.120805

27. Mark W. Newman, Jana Z. Sedivy, Christine M.
Neuwirth, W. Keith Edwards, Jason I. Hong, Shahram
Izadi, Karen Marcelo, and Trevor F. Smith. 2002.
Designing for Serendipity: Supporting End-user
Configuration of Ubiquitous Computing Environments.
In Proceedings of the 4th Conference on Designing
Interactive Systems: Processes, Practices, Methods, and
Techniques (DIS ’02). ACM, New York, NY, USA,
147–156. DOI:http://dx.doi.org/10.1145/778712.778736

28. Don Norman. 1998. The Design of Everyday Things.
Doubleday.

29. Dan R. Olsen, Jr., Scott E. Hudson, Thom Verratti,
Jeremy M. Heiner, and Matt Phelps. 1999. Implementing
Interface Attachments Based on Surface Representations.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’99). ACM, New
York, NY, USA, 191–198. DOI:
http://dx.doi.org/10.1145/302979.303038

30. François Osiurak. 2010. What Neuropsychology Tells Us
about Human Tool Use? The Four Constraints Theory
(4CT): Mechanics, Space, Time and Effort. (2010). DOI:
http://dx.doi.org/10.1007/s11065-014-9260-y

31. François Osiurak and Arnaud Badets. 2016. Tool Use and
Affordance: Manipulation-Based Versus
Reasoning-Based Approaches. (2016). DOI:
http://dx.doi.org/10.1037/rev0000027

32. Alex Repenning. 1994. Programming Substrates to
Create Interactive Learning Environments. Interactive
Learning Environments 4, 1 (1994), 45–74.

33. Randall B. Smith. 1987. Experiences with the Alternate
Reality Kit: An Example of the Tension Between
Literalism and Magic. Proceedings of the SIGCHI/GI
Conference on Human Factors in Computing Systems and
Graphics Interface (1987), 61–67. DOI:
http://dx.doi.org/10.1145/29933.30861

34. Paul S. Strauss. 1993. IRIS Inventor, a 3D Graphics
Toolkit. SIGPLAN Not. 28, 10 (Oct. 1993), 192–200.
DOI:http://dx.doi.org/10.1145/167962.165889

35. Brygg Ullmer, Hiroshi Ishii, and Robert J. K. Jacob.
2005. Token+Constraint Systems for Tangible Interaction
with Digital Information. ACM Trans. Comput.-Hum.
Interact. 12, 1 (March 2005), 81–118. DOI:
http://dx.doi.org/10.1145/1057237.1057242

36. Zhanyong Wan and Paul Hudak. 2000. Functional
Reactive Programming from First Principles. SIGPLAN
Not. 35, 5 (May 2000), 242–252. DOI:
http://dx.doi.org/10.1145/358438.349331

12

http://dl.acm.org/citation.cfm?id=50757.50759
http://dx.doi.org/10.1145/97243.97271
http://dx.doi.org/10.1145/120782.120805
http://dx.doi.org/10.1145/778712.778736
http://dx.doi.org/10.1145/302979.303038
http://dx.doi.org/10.1007/s11065-014-9260-y
http://dx.doi.org/10.1037/rev0000027
http://dx.doi.org/10.1145/29933.30861
http://dx.doi.org/10.1145/167962.165889
http://dx.doi.org/10.1145/1057237.1057242
http://dx.doi.org/10.1145/358438.349331

Appendix
The code in this appendix shows the generic Drag instrument,
the Move instrument that subclasses it, and a move protocol
to move an object by setting its position property.

1 class DragInstrument {
2 // Methods to be redefined in subclasses
3 draggable() {return null;} // return a protocol
4 startAction() {return null;} // return an action
5 dragAction() {return null;} // return an action
6 stopAction() {return null;} // return an action
7

8 // Called in response to incoming signal from input device
9 startDrag() {

10 // Find the target
11 let res = this.draggable();
12 if (! res) return;
13 // Initialize state
14 this.dragging = true;
15 this.delta = {x: 0, y: 0};
16 this.incr = {x: 0, y: 0};
17 // Instantiate protocol and connect our signal to it
18 this.signal = new Signal();
19 let interaction = new res.protocol(this, res.target);
20 interaction.connect(this.signal);
21 // Send start action
22 let action = this.startAction();
23 if (action) this.signal.next(action);
24 }
25

26 drag() {
27 // Update state
28 this.delta.x += this.source.delta.x;
29 this.delta.y += this.source.delta.y;
30 // Send drag action
31 let action = this.dragAction();
32 if (action) this.signal.next(action);
33 }
34

35 stopDrag() {
36 // Send stop action
37 let action = this.stopAction();
38 if (action) this.signal.next(action);
39 this.dragging = false;
40 // Shutdown signal
41 this.signal.complete();
42 this.signal = null;
43 }
44

45 // Called to activate/deactivate this tool
46 activate() {
47 // subscribe to source signal, call startDrag, drag, stopDrag
48 // when mouse down/move/up values are received
49 }
50

51 deactivate() {
52 // unsubscribe from source signal
53 }
54

55 constructor(input) {
56 this.source = input;
57 this.signal = null;
58 }
59 }

Listing 5. The Drag instrument is designed to be subclassed by
instruments that move, resize or otherwise respond to a drag interaction.

1 class MoveInstrument extends DragInstrument {
2 draggable() {
3 // look for a target with a ’move’ protocol
4 let protocol = source.findNamedProtocol(’move’);
5 if (protocol) return protocol;
6

7 // else look for a target with a ’position’ property
8 return this.source.findNamedPropertyProtocol(’position’,

Point);
9 }

10

11 startAction() { // return ’start’ action
12 return { type: ’start’ }
13 }
14

15 dragAction() {
16 // return ’move’ action with incremental and total move
17 return {
18 type: ’move’,
19 incr: this.source.delta,
20 delta: this.delta,
21 };
22 }
23

24 stopAction() { // return ’stop’ action with total move
25 return { type: ’stop’, delta: this.delta }
26 }
27 }

Listing 6. The Move instrument simply redefines the methods of
DragInstrument to find a target and send actions.

1 class MovePositionProtocol extends Protocol {
2 connect(signal) {
3 // Call move when receiving ’move’ actions, but only
4 // once the cursor has moved more than 3 pixels
5 signal.filter(a => a.type === ’move’)
6 .skipWhile(a => norm(a.delta) < 3)
7 .subscribe(a => this.move(a));
8 }
9

10 move(a) {
11 // Set the position of the target object
12 this.target.position.x += a.incr.x;
13 this.target.position.y += a.incr.y;
14 }
15 }

Listing 7. The protocol to move the position of a substrate filters the
input signal and updates the ‘property’ position of the target

13

	Introduction
	Motivation
	From affordances to information substrates
	From human tool use to instruments

	The substrates conceptual model
	Information Substrates
	Agency
	Instruments

	Proof of Concept: Stratify
	Substrates: Data-Reactive Programming
	Agency: Functional-Reactive Programming
	Example: the Move instrument
	Other examples

	Related Work
	Conceptual models
	Substrates in HCI
	Interactive Environments
	Software architectures

	Conclusion
	Acknowledgments
	References

