

# ADVANCED DESIGN OF INTERACTIVE SYSTEMS

29 JANUARY 2026

---

Janin Koch  
Permanent Researcher  
Inria Lille  
[janin.koch@inria.fr](mailto:janin.koch@inria.fr)



# LECTURES & TOPICS

1

## Introduction

Introduction of Goals and Topic

Exercise: DOIS Quiz & Choose groups

Homework: Story Interviews

2

## Understanding Humans

Understand underlying cognitive effects:

Alignment, Theory of Mind, Mental Models

Exercise: Concept Development

Homework: Initial Design

3

## Agency in HAI

Explainability, Ironies of Automation

How to design for Error, Feedback and Control?

Exercise: Build Prototype

Homework: Storyboard

4

## Iterating on Design

Socio-Technical Systems

Exercise: Prototype + Generative Walkthrough

Homework: Revise Concept

5

## Evaluating interactive systems

Overview of evaluation methods

Exercise: Revise Prototype

Homework: Evaluation protocol

6

## Reflection on HAI

Social, legal, sustainability impact of AI

Discuss the role of designers for HAI interaction

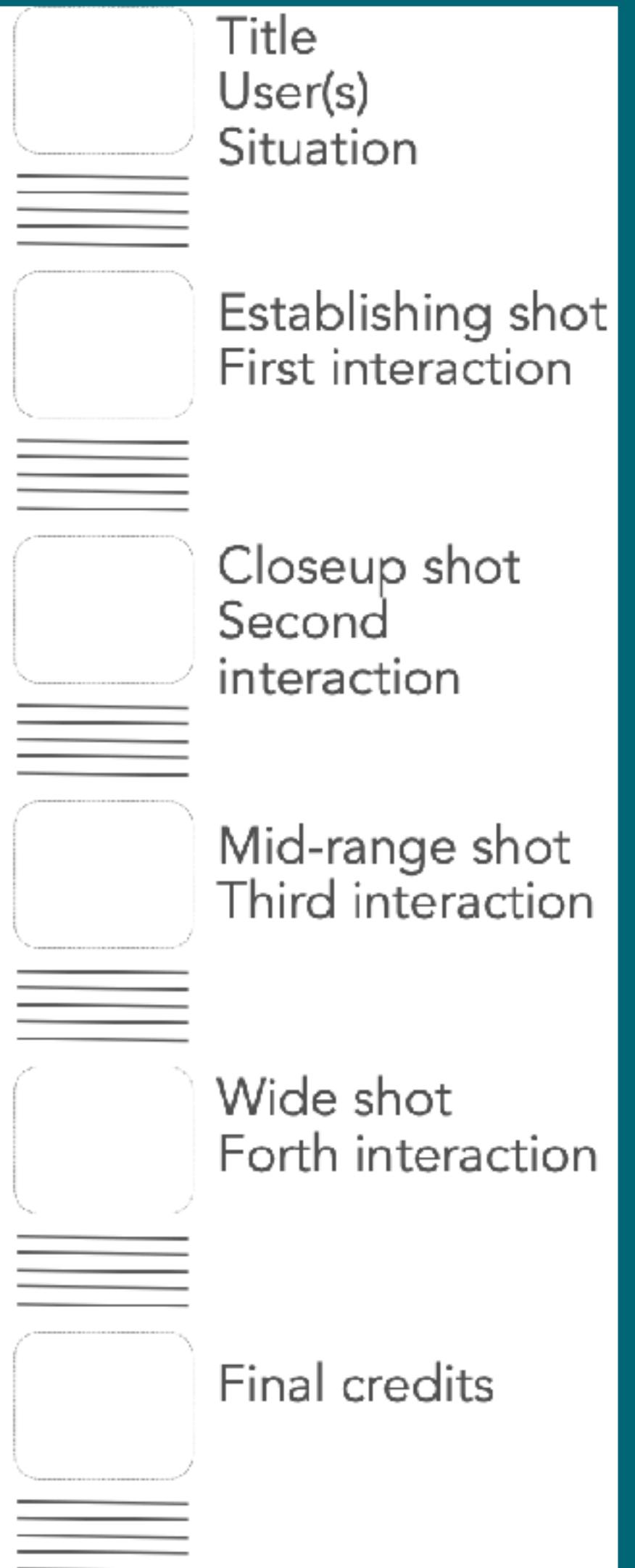
Exercise: Poster, Presentation

FINISH

# STORYBOARD

---

Make a Storyboard:


- Develop a final scenario showing a **common task**
- Note down the interactions in the scenario
- It should show the **whole interaction process**
- Outline a storyboard for the first video prototype
- If several ways of interaction are possible, show them

Create a scenario with  
interaction snippets

Illustrate the interaction  
between the user(s)  
and the system

Tell the story with  
titlecards

Describe issues and  
guide video shoot



## EXERCISE

## PROTOTYPING

- Translate your Storyboard into a paper prototype
- Consider how a user would interact with it
- Aim for consistency — in interaction and layout
- Consider feedback and error notifications
- Does the user feel in control?

How the user can express and control this expression with the system?  
How the system can provide useful feedback ?  
What happens when errors appear?

## EXERCISE

# VIDEO PROTOTYPE

---

- Shoot a 3-5 minute video
- This is not a “how-to” video
- One user is conducting the whole task
- Reveal how your system works by showing how your target user interacts with it
- Use title cards to help the viewer understand the task and user intention
- If you make a mistake, delete and reshoot



# SOCIO-TECHNICAL PRINCIPLES

# SOCIO-TECHNICAL PRINCIPLES

## SOCIO-TECHNICAL PRINCIPLES

- 1 Rhythms & Routines
- 2 Selective Attention
- 3 Situated Action
- 4 Distributed Cognition
- 5 Reciprocal Co-adaptation
- 6 Upskill users
- 7 Explainability

1

Rhythms & Routines

How can we help users take advantage of existing rhythms and routines?

- People are strongly influenced by biological rhythms (Waking or eating time)
  - Temporal rhythms
  - People also establish regular routines (habits)
  - Spatial rhythms

# SOCIO-TECHNICAL PRINCIPLES

## SOCIO-TECHNICAL PRINCIPLES

- 1 Rhythms & Routines
- 2 Selective Attention

Human perception involves both focused and peripheral vision

Most interactive system designers assume they have the user's full attention but users multi-task and live in a complex world

How can we design using the periphery, e.g. to track progress, without distracting users?

# SOCIO-TECHNICAL PRINCIPLES

## SOCIO-TECHNICAL PRINCIPLES

- 1 Rhythms & Routines
- 2 Selective Attention
- 3 Situated Action

Design user interfaces that give users the flexibility to adapt their plans as the context changes

### Emergent action

- Identify which actions emerge when the user is in a specific situation
- Consider relevant properties of the object or the environment

# SOCIO-TECHNICAL PRINCIPLES

## SOCIO-TECHNICAL PRINCIPLES

- 1 Rhythms & Routines
- 2 Selective Attention
- 3 Situated Action
- 4 Distributed Cognition

Not all cognition is located in the brain

We take advantage of the physical environment and other people

- Memory aid (Writing it down lets us forget until we need it)
- Boundary object (Different people interpret objects differently)

How can we make interactive systems easier to learn and easier to appropriate?

- Designers assume users will use systems “correctly”
- Users adapt systems to meet personal needs
- Enable systems to adapt to personal needs

5

Reciprocal Co-adaptation

Automation increases efficiency and lowers costs, but it also deskills workers, who lose valuable skills from their daily work.

### Upskilling (and Reskilling) instead of Deskilling:

- Allow users to make central decisions with the help of systems
- Support skill learning if the skill is central to the task
- Enable development of new skills using the system

5

Reciprocal Co-adaptation

6

Upskill users

Explainability is crucial to support understanding and alignment in human-AI interactions.

- Provide enough information for the user to predict the system reaction
- Support users to interpret system feedback
- Provide enough information for the user to act upon the system reaction

- 5 Reciprocal Co-adaptation
- 6 Upskill users
- 7 Explainability

# GENERATIVE WALKTHROUGH

Generative Walkthrough is a systematic:

- a) critique of a design artifact;
- b) brainstorming to generate new ideas

How to:

1. Look at each interaction snippet in the video
2. Identify what works and what doesn't and reflect on:
  1. Do you understand the interaction (mental model of the user)?
  2. Does it follow the socio-technical principles
  3. Does it follow the 8 golden rules of design?
3. Brainstorm new ways to apply these principles/ rules if relevant.

## EXERCISE

# GENERATIVE WALKTHROUGH

For each interaction (snippet): Analyze, critique, then generate ideas

Three roles:

**Moderator:** Shows video, stops discussion

**Scribe:** Takes notes

**Everyone:** Contribute!

## HOMEWORK

# PREPARE REDESIGN

- Reassess your **users**
- Reassess your **ideas**
- Reassess your **design**
- Reassess your **system**

### 1) Gen. Walkthrough results:

- Summarize in an overview 1) interaction, 2) identified problem, 3) feedback/suggestion
- Make a list and provide improvements for each

### 2) Prepare Redesign: Reflect on your designs and consider context!

Decide on at least 3 new interaction snippets informed by the walkthrough to integrate!

Adapt your future scenario accordingly:

- Is it an interactive tool?
- How does your concept empower the user?
- What are the advantages and disadvantages of using your tool?
- Maybe consider potential other users - how would it change the interaction?

# UNDERSTANDING SYSTEM IMPACT

## Consider the impact on the user

- How does the user interact with the AI?
- Does it “deskill” the user over time?

## Consider errors

- What happens when the AI is not correct?
- Is the user aware of AI errors?

## Can the user correct the errors easily?

- Do not assume the system fully understands user needs
- Design for real-world interaction and errors

## HOMEWORK

# REDESIGN

---

### 3) Technological Feasibility:

- Look at your baseline system/AI—would it support your use case?
- Go through your user interaction:
  - What do you need to translate to the system/user?
  - What other information would you need to collect or present?
- Make a list and suggest technical solutions.

### 4) Update your prototype based on these insights:

- Paper prototype
- Interactive prototype (optional)

# ADVANCED DESIGN OF INTERACTIVE SYSTEMS

29 JANUARY 2026

---

Janin Koch  
Permanent Researcher  
Inria Lille  
[janin.koch@inria.fr](mailto:janin.koch@inria.fr)

