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Abstract
The prevalence of automation and user-adaptive systems
has created a demand for human-machine interfaces that
are designed to be aware and sensitive to the cognitive
states of the user. We argue that the unitary concept of
mental workload is insufficient in capturing the benefits that
computing systems can deliver to their users. More specifi-
cally, we demonstrate with examples from our own research
how to target more specific and robustly defined cognitive
processes, with the use of non-obtrusive methods such as
gaze-tracking, electroencephalography, and physiological
measurements. Our examples, particularly in the evalua-
tion of auditory notification design and in situ displays, will
demonstrate that it is advantageous to target specific cog-
nitive processes and mechanisms in accordance to the de-
sign purpose of a given interface, within the constraints of
contemporary models of psychology and neuroscience.
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Towards machines that support cognition
Two recent trends in computing have created an impetus in
redefining the role of human cognition in human-machine
interactions. More specifically, we refer to the rapid adop-
tion of automation that is able to perform work without our
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constant supervision, and adaptive systems that are capa-
ble of modifying their behavior in response to the chang-
ing demands of the environment and implicit user require-
ments. The design of computing systems have always been
sensitive to the demands that they place on their users. A
cursory search for (“mental workload” & “cognitive work-
load”) in the ACM digital library results in 72,660 articles, of
which almost half were published in the last 7 years alone
(see Figure 3). After all, computing machines are designed
explicitly with the goal to assume part of the cognitive work
that we would, otherwise, have to perform ourselves. For
example, abaci, cameras, and programmable computers
serve to reduce the cognitive effort that has to be expended
in order to count, record memories, and simulate complex
scenarios. The growing ubiquity and functional autonomy
of computing machines elevates their statuses from being
a servant to a collaborator (see Figure 2 for examples). If
computing systems are no longer to be evaluated in terms
of how much mental work they assume on our behalf but,
instead, in terms of their ability to help us think more effec-
tively, should we continue to design human-machine inter-
actions with the objective of minimizing “mental workload”?

Figure 1: The exponential concern
of mental workload in the use of
computing systems. Search
performed on 2018-02-08.

Figure 2: Computing machines
that allow for abstract calculations
have developed over time in terms
of their size and their
programmable functional flexibility.
Top-left (clockwise): Chinese
Abacus (ca. CE 190), Babbages
Analytical Engine (1834-1871),
Programmable calculator (HP-65;
1974), Smartphone (iPhone;
2007): Photo credit: modified from
Wikimedia Commons

Mental workload is a diminishing concept
The concept of “mental workload” is best understood within
the descriptive framework of capacity models [10, 13]. Ca-
pacity models are generally centered around the descrip-
tion that tasks places demands for (mental) resources,
which the human (mind) attempts to supply in order to
maintain a steady and acceptable level of performance.
The total capacity of (mental) resources can be raised to
meet the challenges of a more demanding task. However,
it cannot do so indefinitely. Thus, demands can supercede
supply and result in poor task performance. This charac-
terization highlights an inconvenient truth, one that is often
neglected—namely that task performance is not indicative

of workload. A constant level of performance can be main-
tained in spite of diminishing spare capacity, namely the
difference between one’s total capacity and task demands.

Unfortunately, poorly designed machines can not only fail to
ease our workload; they can increase our workload. There
are at least two reasons for this. First, unintuitive machine
interfaces can introduce unintended complexity into our in-
teractions with the machine. This could pose a additional
and non-negligible workload that might go unnoticed, so
long as the job continues to get done and users do not ex-
press discomfort. For example, using an abacus (or beans)
for counting might be preferable to using an Excel spread-
sheet because it does not place a demand for abstract rea-
soning, which might be effortful for some. Second, user
expectations could contradict the engineered purpose of a
machine. This creates confounding results and more men-
tal effort might be expended, than was anticipated, as users
attempt to re-purpose a machine for a job that it was not
designed for. The popularity of mobile computing devices
(i.e., smartphones) might have arisen because it traversed
both hurdles effectively. Touch devices with intuitive gesture
interfaces do not require symbolic reasoning. Furthermore,
a diverse application market has resulted in a software en-
vironment with functionalities that are driven by user choice
and is, hence, more likely to be aligned with user expecta-
tions.

Thus, the “mental workload” experienced by users ought
to be an important measure, at least of the extent to which
computing machines relieve users of performing work. Un-
fortunately, there is no good measure for “mental workload”.
Subjective questionnaires, such as the popular NASA-TLX
[9], require subjects to recall their experiences with interact-
ing with a given system and broadly assumes that we are
conscious of how much mental effort we expend. Physio-



logical responses when applied without context can often
be confounded with interesting but unrelated aspects of a
user’s state. For example, changes in pupil dilations can
indicate a range of user states, from autonomic emotional
arousal [2] to attention focus [12] to memory formation [8].
In this example, the claim that changes in pupil dilation re-
late to increases in “mental workload” is not entirely wrong,
even after uninteresting influences are factored out e.g.,
ambient lighting [15]. However, we would contend that it is
not particularly useful.
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Figure 3: Speech notifications
result in larger early neural
responses, associated with
detection processes, while auditory
icons result in larger late
responses, associated with context
updating.

More recent applications of electroencephalography (EEG)
as objective and direct measurements of “mental workload”
suffer from similar inferential limitations. Decreased power
in alpha oscillations (i.e., 8-12 Hz) in the EEG signal is an
established marker for “mental workload” [3, 16, 1]. How-
ever, investigations that use functional magnetic resonance
imaging to associate brain regions with this broad EEG
measure have revealed that alpha oscillations are likely
to signal a neural baseline for “inattention”. In this light, it
is unsurprising that alpha power decreases when the mind
is occupied. While it is correct to say that alpha power is a
metric for “mental workload”, it is similiarly appropriate to
question whether it is a useful metric for evaluating human
cognition when interacting with novel machine interfaces.

Mental workload may no longer be a useful concept, es-
pecially if we are no longer designing computing systems
to alleviate workload but rather to facilitate our cognitive
processes instead. The increasing sophistication of artifi-
cial intelligence motivates this objective of fluent human-
machine collaborations. Arguably, computing systems are
often designed to perform targeted computational tasks in-
stead of relieving mental workload in general. Thus, it could
be preferable to determine, in the first place, whether a ma-
chine is assisting the user in performing a given task in the

first place rather than to ask whether or not it results in less
mental workload.

Designing for cognitive processes
Here we provide two examples where we first address the
cognitive process that a given interface is supposed to tar-
get, before we evaluate it for whether or not it does with the
use of EEG methods. By identifying and targeting specific
cognitive processes that are well-described in psychology
((i.e., discrimination, context-updating, working memory
load) and are the aspects that an interface is designed for,
we are able to focus the questions that we ask concerning
the utility of the system that we are evaluating.

Our first example is drawn from auditory notification dis-
plays, specifically in the domain of in-vehicle notifications
[7, 4]. There is no clear consensus on what constitutes an
optimal auditory notification for an in-vehicle environment.
Although meaningful guidelines and recommendations ex-
ist [14], it is unclear whether speech commands or auditory
icons might be preferable for any given purpose. In a recent
project, we evaluated auditory notifications that were explic-
itly designed for in-vehicle task management [11]. While
a previous evaluation suggested that users responded
faster to speech commands, which led to the recommen-
dation of their use [5], we found a more subtle distinction
between the two sounds. Using EEG/ERP techniques, we
found that speed commands evoked larger early brain re-
sponses at around 236–304 ms than auditory icons after
they were played, while auditory icons evoked larger late
brain responses at around 352–468 ms subsequently. This
suggests that the different notifications have preferential
access to different cognitive mechanisms, as opposed to
the simplistic assertion that one notification is more readily
detected than another. Indeed, the earlier ERP component
(i.e., P2) is typically associated with target discrimination



while the later ERP component (i.e., P3b) is typically asso-
ciated with context-updating [17]. In other words, it is more
appropriate to describe speech commands as being more
discriminable notifications and auditory icons as being more
representative or vivid notifications. Indeed, it was for these
reasons that motivated their consideration as suitable notifi-
cation candidates in the first place.

In a separate example, we describe a recent evaluation
that we performed using EEG to validate our belief that in
situ displays result in less “mental workload” because they
reduce the number of items that users have to hold in mem-
ory while performing a task [6]. Until this evaluation was
performed, in situ projections that presented the next as-
sembly piece in concert with the user’s activity consistently
resulted in faster assembly performance and higher subjec-
tive preference, compared to conventional methods (e.g.,
paper instructions). While we theorized that such systems
resulted in less “mental workload” because it provided an
interface that assumed the function of working memory,
this could be directly verified; Subjective reports of “mental
workload” were either inconsistent or simply not attainable
given that such systems were developed to assist the cog-
nitively impaired. To verify our design beliefs, we first identi-
fied the EEG frequency bandwidth for which gradual atten-
uations were apparent specifically for when they performed
a visuospatial working memory task; this bandwidth varied
across individuals about the 10 Hz region. Subsequently,
we confirmed that EEG power in the same bandwidth was
significantly less attenuated when participants relied the in
situ display compared to when they did not. This provided
converging evidence that an in situ display reduced working
memory load for visuo-spatial objects.

Conclusion and Outlook
In this position paper, we argue that there is a growing need
to address the specific cognitive role of humans with re-
gards to their interactions with computing systems that will
be designed to facilitate human work instead of assume it.
In view of this trend, we argue that the unitary concept of
“mental workload” is unlikely to offer a level of insight that
will be effective in guiding interface design or character-
izing how we cognitively respond to novel interfaces. To
understand how a given interface modifies or supports our
cognitive processes it is necessary to have an apprecia-
tion for the design motivation of the interfaces themselves,
the functional resolution of the methods used to infer cog-
nitive activity, and, above all, a good working definition of
the cognitive processes that are being targeted. Two exam-
ples were provided from our research to illustrate our meth-
ods that relied on EEG. EEG is a useful tool not because
it offers a direct measurement for cognitive processes but
because it allows us to distinguish between potentially sep-
arable cognitive processes, which are suggested by psy-
chological models.
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