Rethinking Interaction with Literate

Computing

Clemens N. Klokmose Roman Radle

Aarhus University Aarhus University
Aarhus, Denmark Aarhus Denmark
clemens@cavi.au.dk roman.raedle@cc.au.dk

Rethinking Interaction: From Instrumental Interaction to Human-Computer
Partnerships. CHI 2018 workshop.
© 2018 - Copyright is held by the authors.

Abstract

Given the wide uptake of interactive notebooks such as
Jupyter Notebook, the software paradigm of literate comput-
ing have in recent years gained significant popularity. In this
position statement, we will unfold our experiences of work-
ing with literate computing. We draw these experiences
from a one-and-a-half year of using Codestrates—our im-
plementation of a literate computing environment.

Author Keywords
Interactive notebooks; literate computing

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g., HCI)]:
Miscellaneous

Introduction

Given the wide uptake of interactive notebooks such as
Jupyter Notebook', the software paradigm of literate com-
puting have in recent years gained significant popular-

ity. According to Fernando Perez, one of the inventors of
Jupyter Notebook, literate computing is the act of weav-
ing “a narrative directly into a live computation, interleaving
text with code and results to construct a complete piece
that relies equally on the textual explanations and the com-

jupyter.org


jupyter.org

putational components.”? Particularly data scientists have

adopted tools such as Jupyter Notebook or more recently
Observable Notebook® to create documents that embed
executable program code for e.g. live numerical analysis,
statistical modeling, and data exploration.

Literate computing has been promoted as a catalyst for

open science [7]. It enables the creation of scholarly doc-
uments that include executable computations with their
source code interwoven with text. A prominent use of Jupyter
notebooks, for example, is the use by researchers from the
LIGO observatory to disseminate the results on gravita-
tional waves®.

Jupyter Notebook is the most widespread and popular liter-
ate computing environment. It relies on a web-based fron-
tend that communicates with a Python backend, so-called
kernels, capable of executing code in various languages
(e.g., Python, JavaScript, Haskell, Julia). After code execu-
tion, the backend returns the result to the frontend. Users
can share Jupyter notebooks via GitHub or through exports
as “ipynb” files. Google’s Colaboratory®, combines Jupyter
Notebook with Google’s real-time collaborative editing as,
for example, used in Google Docs. Observable notebooks
are JavaScript-based, and all execution happens exclu-
sively in the browser. They are geared towards using mod-
ern web frameworks such as D3® for visualization. Note-
books made with Observable can be shared with others
and forked to create personal copies. An extreme exam-

2http://blog.fperez.org/2013/04/literate-computing-and-computational.

html
3observablehg.com
“https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.
html
Shttp://colab.research.google.com
8http://d3js.org

ple of literate computing happens in Dynamicland’ by Bret
Victor and colleagues. In Dynamicland, programs (concep-
tually) reside on printed paper, which is tracked in space
and projected on through arrays of projectors and cameras.

Literate computing is also appealing for human-computer
interaction standpoint. The distinction between “develop-
ment and use” of software is blurred, programming in a doc-
ument allows transforming the document into something
that typically is not associated with “a document”, yet the
structure of the software artifact as a document provides a
nice set of familiar affordances of sections and paragraphs
in word processing.

In our research group, we have been experimenting with
alternative applications that could benefit from literate com-
puting. We have developed Codestrates [6], a web-based
literate computing environment built on top of Webstrates [3].
With Codestrates, we push the literate computing approach
of mixing code and prose beyond the state-of-the-art by
allowing users to create and personalize documents, cus-
tomize the documents’ tools, and even reprogram them to
fit a particular purpose. We generalize the notion of literate
computing to document-centric software where the code
lives side by side with other web-based content. In addi-
tion to literate computing in the classical sense of Knuth [4]
where users create documents with embedded computa-
tion, it enables the creation of usable applications where
the code at any point can be inspected and changed. By
leveraging Webstrates, Codestrates inherently supports
real-time collaboration on editing the document contents
(e.g., as in Google Colaboratory), but also beyond in col-
laboratively changing the appearance and interactions of
applications built with Codestrates.

https://dynamicland.org


http://blog.fperez.org/2013/04/literate-computing-and-computational.html
http://blog.fperez.org/2013/04/literate-computing-and-computational.html
observablehq.com
https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.html
https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.html
http://colab.research.google.com
http://d3js.org
https://dynamicland.org

Experiences with Codestrates

Our experiences with using Codestrates over the last one-
and-a-half years is that a literate computing environment
has the potential to change the way we think and make cre-
ative decisions when working with digital artifacts.

Document-based content creation

Interaction in Codestrates is document-based rather than
application-based. Each codestrate is a document that con-
tains functionality to write text and code, apply styles, and
store data. These building blocks, so-called paragraphs,
empower users to customize documents with additional
functionality as the needs arise—in contrast to monolithic
applications with their pre-defined and fixed functionality.
For example, a user can start with a basic codestrate and
use it, e.g., for note-taking. Then, when needs change, they
can gradually extend the codestrate with functionality—
either by writing code or by importing functionality other
users have made.

This “document-based” interaction has changed our own
thinking when working with documents from “I need to open
Microsoft PowerPoint to create slides for a lecture” to “let’'s
create content for the lecture first and then later transform it
to slides.”

Sharing functionality

Gradually extending a document with new functionality can
result in functionality that might be useful in other cases.
For example, a countdown timer initially implemented to no-
tify students about the remaining time during group work in
a lecture can also be used for writing with Pomodoro Tech-
nique®.

8Pomodoro is a time management method, which uses a timer to
break down work into several intervals.

We have realized that sharing functionality between code-
strates is essential if we want to avoid the “all-in-one code-
strate suitable for every purpose,” where all past, present,
and future functionality will be part of every basic code-
strate. This, of course, would also lead to a user interface
cluttered with many buttons and menu items that give ac-
cess to this functionality even though the user might never
need it.

To facilitate easy sharing of tools we have introduced—what
we call—package management [2]°. Any functionality of

a codestrate can be turned into a package and pushed

to a package repository, which is also just a codestrate.

We have a designated codestrate in our research group to
which we push new functionality (i.e., tools, codestrate ex-
tensions). All group members that have access to our pack-
age codestrate can pull functionality from it. This allows for
reuse of the same functionality in different codestrates and
at the same time sharing it with others.

We have developed myriads of tools and functionality to
support different tasks ranging from free-hand drawing,
creating presentations and coding exercises, making vi-
sualizations, connecting to loT devices (e.g., Arduino Uno),
and promote remote collaboration including video commu-
nication. We have experienced an excitement in writing new
functionality as packages and share it with others as well as
to try out new packages written by others.

Types of “applications”

A codestrate can be created as a prototype of another, and,
e.g., a combination of PDF annotation functionality and a
notetaking tool serves as excellent paper reviewing code-
strate prototype.

9Implemented by Marcel Borowski, University of Konstanz



We have created codestrates for making programming as-
signments for our programming classes, including scaf-
folding for the instructor to write “code tests” to give instant
feedback to the students while solving the exercises. Each
student creates a copy of an exercise codestrate, and when
finished sends the link to the teaching assistant for com-
ments.

When making programming exercises it can be difficult to
assess whether they hit the right level for the students. We
can add survey functionality to an exercise codestrate to get
additional feedback from the students (e.g., multiple-choice
or open-ended questions). Their survey response is then
stored in the codestrate and together with their solution to
the exercise.

With our approach to literate computing, the user does nei-
ther have to anticipate the outcome or product nor choose
an appropriate application, but can begin working, e.g., on
coding exercises and later decide that a survey is needed,
and add that. This is a workflow that is very different from
the traditional application-based model where you have to
decide in advance what type of outcome you will have to
choose an application for making it.

Interest in Workshop

With this position paper, we are stating our interest in dis-
cussing the challenge of creating “interactive digital environ-
ments that are flexible enough to support appropriation by
end users.”

We envision software tools that stand in a dialectical rela-
tionship or partnership with the user; software tools that
mature and improve with users’ skills and vice versa. We
have taken a small step in this direction with Codestrates
and its the package management functionality. It allows
users to reconfigure their software—without necessarily

having to know programming or engage in programming.

We are interested in discussing how the approach to soft-
ware that we have taken align with the principles of instru-
mental interaction [1] and co-adaptation [5].

REFERENCES
1. Michel Beaudouin-Lafon. 2000. Instrumental
interaction: an interaction model for designing
post-WIMP user interfaces. In Proc. CHI '00. ACM,
446-453.

2. Marcel Borowski, Roman R&dle, and
Clemens Nylandsted Klokmose. 2018. Codestrates
Packages: An Alternative to "One-Size-Fits-All"
Software. In Proc. CHI °18 Extended Abstracts (CHI EA
'18). ACM, New York, NY, USA.

3. Clemens N Klokmose, James R Eagan, Siemen
Baader, Wendy Mackay, and Michel Beaudouin-Lafon.
2015. Webstrates: shareable dynamic media. In
Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology. ACM, 280—290.

4. Donald Ervin Knuth. 1984. Literate programming.
Comput. J. 27, 2 (1984), 97-111.

5. Wendy E Mackay. 2000. Responding to cognitive
overload: Co-adaptation between users and
technology. Intellectica 30, 1 (2000), 177-193.

6. Roman Radle, Midas Nouwens, Kristian Antonsen,
James R Eagan, and Clemens N Klokmose. 2017.
Codestrates: Literate Computing with Webstrates. In
Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology. ACM,
715-725.

7. Helen Shen. 2014. Interactive notebooks: Sharing the
code. Nature News 515, 7525 (2014), 151.



	Introduction
	Experiences with Codestrates
	Document-based content creation
	Sharing functionality
	Types of ``applications''

	Interest in Workshop
	REFERENCES 

