
Interaction Substrates:
Combining Power and Simplicity in Interactive Systems

Wendy E. Mackay

mackay@lisn.fr

Université Paris-Saclay, CNRS, Inria

Laboratoire Interdisciplinaire des Sciences du Numérique

91400 Orsay, France

Michel Beaudouin-Lafon

mbl@lisn.fr

Université Paris-Saclay, CNRS, Inria

Laboratoire Interdisciplinaire des Sciences du Numérique

91400 Orsay, France

Abstract

Today’s graphical user interfaces tend to be either simple but lim-

ited, or powerful but overly complex. In order to combine power

and simplicity, we introduce Substrates, which act as “places for

interaction” where users canmanipulate objects of interest in a prin-

cipled and predictable way. Substrates structure and contain data,

enforce user-defined constraints among objects and manage depen-

dencies with other substrates. Users can “tune” and “tweak” these

relationships, “curry” specialized tools or abstract relationships

into interactive templates. We first define substrates and provide

in-depth descriptions with examples of their key characteristics.

After explaining how Substrates extend the concept of Instrumental

Interaction, we apply a Generative Theory of Interaction approach to

analyze and critique existing interfaces and then show how using

the concepts of Instruments and Substrates inspired novel design

ideas in three graduate-level HCI courses. We conclude with a

discussion and directions for future work.

CCS Concepts

• Human-centered computing→ Human computer interaction
(HCI).

Keywords

Substrates, Content-authoring systems, Creativity Support, Gener-

ative Theory of Interaction, Instrumental Interaction, Reification,

Polymorphism, Reuse, Currying, Templating, Tuning, Tweaking

ACM Reference Format:

Wendy E. Mackay andMichel Beaudouin-Lafon. 2025. Interaction Substrates:

Combining Power and Simplicity in Interactive Systems. In CHI Conference
on Human Factors in Computing Systems (CHI ’25), April 26-May 1, 2025,
Yokohama, Japan. ACM, New York, NY, USA, 16 pages. https://doi.org/10.

1145/3706598.3714006

1 Introduction

Professional content-authoring applications include complex sets of

commands that let experts create sophisticated documents, images,

videos and music. However, such applications require significant

effort to learn, partially because they often include idiosyncratic

techniques that are unique to each application and are rarely trans-

ferable to other contexts. They also provide limited capabilities

This work is licensed under a Creative Commons Attribution 4.0 International License.

CHI ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1394-1/25/04

https://doi.org/10.1145/3706598.3714006

for users to adapt them to their needs and work practices. Li [33]

argues that the balance of power between designers and users of

creativity-support tools is biased towards the former. Our goal is

to provide designers with concepts and principles that help them

create more flexible digital environments so that users enjoy more

powerful yet simpler interfaces.

Giving more power to end users is not just a question of adding

more features to existing applications — they already have more

features than most can deal with [41]. Nor is it a question of facili-

tating the novice-to-expert transition [12], which usually focuses

on improving the user’s efficiency rather than challenging the ap-

plication’s feature set or fundamental design. We propose instead

to reassess the underlying conceptual model of the structure and
content that users interact with.

Our work is inspired by how people interact with objects in the

physical world. People naturally develop an understanding of the

properties of objects and of the technical principles for affecting

these properties, such as the knowledge that a sharp object can cut

a softer one. This technical reasoning [45, 46] enables humans to

solve problems and achieve their goals in inventive yet simple ways,

e.g., when using a napkin as a drawing surface to sketch an idea.

This understanding of what diSessa calls “naive physics” [15] does

not exist, at least to the same extent, in the digital world, where

expertise often simply means developing procedural knowledge of
the system’s idiosyncrasies i.e. “recipes” that do not require a deep

understanding of how the system works.

We address these limitations by presenting a novel conceptual

model that serves as a paradigm for rethinking the design of graph-

ical user interfaces. We introduce the concept of Interaction Sub-
strates, which act as “places for interaction” where users can learn

and rely upon easily detectable rules that govern the behavior of

digital objects within that space. The resulting interactive systems

enable users to manipulate objects in predictable ways, thus encour-

aging them to develop transferable expertise across applications

and over time. We present this approach as a strategy for increasing

both the power and simplicity of interactive applications.

We first introduce and define the term Substrate. We then review

related research on conceptual models in HCI, document-centric

environments, the trade-offs between power and simplicity, and

previous uses of the word “Substrate” in HCI. We next describe

and illustrate the key characteristics of Substrates. After explaining

how we extended Instrumental Interaction [4, 8] to incorporate

the concept of Substrates, we introduce two additional principles:

Adjustment and Specialization. We then apply the Generative The-

ory of Interaction framework [7] to Instruments and Substrates

by analyzing and critiquing existing commercial applications and

https://orcid.org/0000-0001-8261-2382
https://orcid.org/0000-0002-2905-9810
https://doi.org/10.1145/3706598.3714006
https://doi.org/10.1145/3706598.3714006
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3706598.3714006

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Mackay & Beaudouin-Lafon

a

change

Color

b

Style

Shadow

Color

assign

assign
Color

change

update

Figure 1: a The user applies commands to change each

graphical attribute individually (dashed blue arrow), e.g., turn

the background color purple. b Style object: The user cre-

ates a style with multiple attributes, e.g., color and shadow,

and assigns it to two logos (dashed blue arrows). Changing
the style’s color (top dashed blue arrow) automatically up-
dates the color of both logos (solid red arrows).

research projects, and describe how using these concepts in three

graduate-level courses inspired innovative designs that are both

powerful and simple to use. We discuss the benefits and limitations

of Substrates and conclude with directions for future research.

2 Definitions

Before proceeding with in-depth descriptions and examples, we

first define the key terms used throughout this paper.

2.1 Objects of Interest and Commands

Shneiderman [51] introduced the term Object of Interest to describe
the conceptual objects that are represented visually in a Direct

Manipulation interface. These objects form the content that users
interact with to achieve their goals. For example, a diagram edi-

tor’s objects of interest include rectangles, ovals, lines and other

graphical shapes, whereas a word processor’s objects of interest

include sections, paragraphs and figures. Beyond these primary
objects of interest, interactive applications typically introduce what

we call secondary objects of interest to make interaction simpler

and/or more powerful. For example, “styles” are secondary objects

of interest that let experienced users control diagram editors and

word processors more efficiently.

Users create, modify and delete Objects of Interest through com-
mands. In Graphical User Interfaces (GUIs), users issue commands

via tools such as menus, buttons, toolbars, scroll bars, dialog boxes

and property sheets (or inspectors). Some mimic real-world tools,

such as the brush in a painting program. Others resemble control

panels, such as the sliders used to select an RBG color. However

many just appear as items on a menu, such as the “Print” command.

Our goal is to provide a more principled approach to identifying

and organizing a coherent set of objects of interest and commands

in interactive systems.

2.2 Power and Simplicity

Alan Kay argues that “simple tasks must be simple, and complex

ones must be possible” [30]. This sets up a trade-off between power

of expression (making complex tasks possible) and simplicity (mak-

ing simple tasks simple) [38]: a simple interface may lack power,

whereas a powerful interface may be too complex to use. We de-

fine simplicity as the cost of achieving a given result measured as

the number of actions such as pointing, clicking or typing [1]. We

define power as the scope and complexity of a command’s effects.

For example, a single command that aligns a group of objects is

both simpler and more powerful than moving them one by one.

Commands that create relationships that are then managed by the

system are more powerful than commands that simply change the

state of an individual object of interest, because they transfer the

task of maintaining the relationship from the user to the system.

These are also simpler to use, provided that the user understands

the relationship and the system provides appropriate feedback.

Style objects illustrate a useful combination of power and simplic-

ity. A style object (Fig. 1) collects the values of multiple attributes

and lets the user apply them to any object with a single command.

The interaction is thus simpler, since a single action replaces multi-

ple commands, and more powerful, since styles maintain the rela-

tionships between the shapes and their attached values: changes in

any style attribute affects all objects with that style.

2.3 Substrates

We define substrates as places for users to interact with their objects

of interest. A substrate:

(1) contains and structures objects of interest;
(2) manages internal constraints among objects; and

(3) supports dependencies from other substrates or external sources.

Designers create substrates to provide a coherent environment

where users issue commands that let them interact with both pri-

mary and secondary objects of interest, their constraints and de-

pendencies, and the substrates themselves. The following examples

illustrate each of the above characteristics:

(1) Structure: A substrate manages a set of objects according

to a structure. For example (Fig. 2), a table organizes cells

into rows that the user interprets as records of a dataset and

columns as values of a given attribute. Similarly, a diagram

editor creates an ordered list of shapes that defines which

object appears on top when they overlap.

Table substrate List substrate

Object Object

Object

Object

Object

Object

ObjectObject

Object

Object2

A B C

1

Figure 2: Substrates contain structured sets of objects: The

Table substrate contains a spreadsheet with an object in each

cell; the List substrate contains an ordered list of objects

representing graphical shapes.

(2) Constraints: Substrates support explicit constraints that

users can create, edit and remove. For example (Fig. 3), a

spreadsheet might recompute formulas when the referenced

cells change; a diagram editor might include alignment con-

straints that keep objects aligned when they are moved.

Interaction Substrates:
Combining Power and Simplicity in Interactive Systems CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Table substrate

Object Object Object

Constraint
C1 = A1+B1

A B C

1

List substrate

Constraint
align

Object

Object Object Object

Figure 3: Constraints enforce relationships among objects

in a substrate. The Table substrate contains a formula that

calculates a sum; the List substrate contains a constraint that

aligns the shapes.

(3) Dependencies: Substrates may depend on the content of

other substrates or data from external sources and update

their state whenever the source substrate or data changes.

For example (Fig. 4), a graphing application may extract

data from a spreadsheet substrate to create a plot that up-

dates automatically whenever the spreadsheet changes. The

spreadsheet itself may update according to new readings

from an external sensor.

Table substrate List substrate

Object Object

Object

Object

Object

Object

ObjectObject

Object

Object

Dependency

Dependency

2

A B C

1

Figure 4: Dependencies enforce relationships among sub-

strates. Shapes in the List substrate are tied to specified cells

in the Table substrate.

3 Related work

We briefly review relevant previous work on conceptual models of

interaction, on document-centric environments, and on improving

power and simplicity in interactive systems. We then position our

work with respect to previous uses of the word “substrate” in HCI.

3.1 Conceptual models

According to Norman [43], a conceptual model describes both the

system designer’s model of the system and the mental model users

create as they interact with it. Unfortunately, we know of no for-

malisms that describe these models. Johnson & Henderson’s con-

ceptual model [28] is based on objects and operations but remains

very high level. The principles of Direct Manipulation [51] — con-

tinuous representation of objects of interest, physical, incremen-

tal, reversible actions, rapid learning — are also high level and do

not provide a framework for describing either the objects nor the

actions. Similarly, Model-based user interfaces [42] are based on

descriptions of tasks and “domain concepts” but do not provide

specific guidance for how to describe or organize the concepts.

Jacob et al.’s reality-based interfaces [26] encourage exploiting

the qualities of real-world physical objects in the digital world, but

lack specific concepts. Ullmer et al. [57]’s Tokens+Constraints con-

ceptual model for tangible interaction is more precise and closer to

our work, but is mostly descriptive and lacks generative principles

that can inform the design of novel interfaces.

We build upon two more relevant approaches: Höök & Löw-

gren’s [24] “strong concepts” serve as intermediate-level knowl-

edge that can inform new designs, whereas Generative Theories of

Interaction [7] offer an actionable approach to creating and apply-

ing such concepts. Instrumental Interaction [4] is a key inspiration

for the concept of a substrate and its design principles [8], together

with our empirical studies of designers and end users. Although

substrates complement instruments by describing the context in

which they operate, the concept of substrate is independent from

that of instrument and is applicable in non-instrumental interfaces.

3.2 Document-centric environments

The design of the first commercial graphics workstation, the Xerox

Star [29], was centered on the concept of document and did not

feature applications. Users could freely combine different types of

content — text, images, tables, graphs — in the same document and

interconnect them so that, for example, a bar chart would update

automatically when the associated data table was edited.

Since then, digital environments have become overwhelmingly

application centric, each specializing in a single content type. In

the early 1990’s, Microsoft’s OLE
1
and Apple’s OpenDoc [13] in-

troduced document-centric models that let users include different

types of content into their documents. Unfortunately, these systems

did not push the document metaphor far enough, since each data

type still required its own commands. Rather than creating a unified

environment where different types of content and tools coexist and

interoperate, they simply made application boundaries less visible.

Software suites such as Microsoft Office,
2
Adobe Creative Cloud

3

and Affinity
4
attempt to blur the application boundaries with, e.g.,

dynamic links that update automatically when importing content

from another application in the suite, but they do not support tools

that work across applications.

Our model is closer to the original document-centered approach:

Substrates separate content from the commands used to manipulate

them and promote a form of interoperability such that commands

work for different types of substrates. Even so, substrates can also

be used in traditional applications.

3.3 Power and simplicity in interactive systems

Designing interactive systems involves a trade-off between power
of expression and simplicity of execution [38]. Most environments

that offer users more power are programming environments aimed

at developers rather than end-users. Alan Kay spoke of software

as “clay” [31] and created malleable environments, most notably

Smalltalk [20]. More recently, Lively [25] offers a similar approach

in a web browser. User-driven development [34] specifically targets

end users by letting them program new features themselves. Al-

though one could envisage this type of programming environment

for substrates, this is not the goal of our current work.

1
https://learn.microsoft.com/en-us/cpp/mfc/ole-background?view=msvc-170

2
https://www.microsoft365.com

3
https://www.adobe.com/creativecloud.html

4
https://affinity.serif.com

https://learn.microsoft.com/en-us/cpp/mfc/ole-background?view=msvc-170
https://www.microsoft365.com
https://www.adobe.com/creativecloud.html
https://affinity.serif.com

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Mackay & Beaudouin-Lafon

a b c d

Figure 5: a Substrates provide both meaning and constraints to a set of dots. b A musical score transforms these dots into

notes on a staff. c A graph constrains the dots to underlying data values. d Amap specifies that dots correspond to addresses.

Instead, ourwork echoes the spirit of theAlternate Reality Kit [52],
where objects appear to follow the laws of physics and can be ma-

nipulated in predictable ways with respect to other objects, thus

encouraging exploration. Although we do not seek the same kind

of literalism, our goal is similar, namely to facilitate the free com-

bination of objects through polymorphic tools and substrates. A

number of systems show the value of empowering users without

sacrificing simplicity of interaction: Buttons [39] let users embody

interactive behavior into sharable, configurable buttons; Interface
attachments [44] augment existing applications based on their sur-

face representations; and Scotty [16] injects code into existing ap-

plications to augment or replace their functionality. Our goal is

similar — to encourage more open environments that can easily

incorporate new functionality. However, rather than relying on ad

hoc solutions, we define actionable, unifying principles that enable

such diversity and flexibility.

3.4 Previous uses of the word “substrate”

We have already used the term “substrate” in previous work. Paper
substrates [17] enable composers to create complex musical works

by linking and layering sheets of interactive paper that represent

and interpret digital data. For example, translucent substrates can

reveal and interpret data from underlying substrates and users

can simply draw a line to interconnect two substrates. Maudet et

al. [40] highlight the difficulty graphic designers face when trying

to represent their mental models of layouts in current software

tools, and demonstrates how Graphical substrates can address this

gap. Narrative substrates [21] capture selected traces of a player’s

activity in an online game and transform them into persistent,

interactive content accessible to other players.

Webstrates [32] uses Web technologies to implement shareable

dynamic media. The authors define “information substrates” as

“software artifacts that embody content, computation and interaction,
effectively blurring the distinction between documents and applica-
tions”. The Webstrates server propagates changes in a web page’s

Document Object Model (DOM) to other clients in real time, and lets

users transclude (include) one document within another. While this

definition is similar to ours, a key difference is that Webstrates sup-

ports only one kind of substrate, the DOM, whereas our approach

supports multiple levels of interconnected substrates.

In summary, our work extends and unifies previous work by

proposing a more precise and operational definition of the con-

cept of substrate. We build on Beaudouin-Lafon’s definition [6]:

“A substrate is a digital computational medium that holds digital
information, possibly created by another substrate, applies constraints
and transformations to it, reacts to changes in both the information

and the substrate, and generates information consumable by other
substrates”. The next section provides in-depth descriptions of the

characteristics of substrates.

4 Substrates

Our key insight is that focusing on objects of interest and com-

mands is not sufficient to increase power and simplicity, we must

also consider the structure that contains the objects of interest and
the effects of commands on these objects. First, users infer the capa-

bilities of an application not only from the objects they perceive,

but also from their environment i.e. the structure that hosts them.

Revealing the structure may therefore facilitate interaction. For

example, seeing a grid implies that content belongs to cells and that

the users can manipulate the rows and columns.

Second, users often apply and re-apply the same command to a

set of objects in order to maintain a particular relationship among

these objects. For example, users must manually re-align a set of

aligned objects after moving one of them. Transferring the main-

tenance of the alignment to the system as a persistent constraint

would increase the power of the interface.

Third, users should be able to tailor the environment tomeet their

needs. They may want to “tweak” constraints without breaking

them, for example, to adjust the alignment of an odd-shaped logo in

a diagram editor without losing the offset when the set of aligned

objects is moved. They may also want to reuse content by creating

templates with placeholders for new data, for example, to create a

set of inter-related budget formulas in a spreadsheet and save them

as a template for use when creating next year’s budget.

4.1 Substrates structure the objects they contain

Substrates help both users and the system interpret the meaning

and capabilities of the objects contained within the substrate. For

example, if we look at a set of dots on the screen (Fig. 5a), it is

not clear what they mean or what operations can be performed on

them. However, if we clarify that the dots exist within a particular

substrate (Fig. 5b,c,d), both their meaning and how they can be

manipulated becomes clear.

In Figure 5a, the user expects to be able to move the dots around,

without any particular constraint. In the context of a musical staff

(Fig. 5b), the dots clearly represent the notes of a music score and

the user expects that they can be moved only on or between the

lines of the staff. In Figure 5c, the same dots are tied together by a

line and the two axes convey the fact that they represent the data

points of a line plot. Here, the interpretation is that the dots are tied

to a data table and cannot be moved directly, but instead that the

data table should be changed in order to change the graph. Finally,

Interaction Substrates:
Combining Power and Simplicity in Interactive Systems CHI ’25, April 26-May 1, 2025, Yokohama, Japan

in Figure 5d, the dots are laid out on a map and are interpreted as

locations. As with the music staff, the user expects to be able to

move the dots only to positions that represent legal addresses. The

user may also expect to be able to create new dots by entering an

address, e.g. in a text field.

Each of these four substrates thus offer different meaning and ca-

pabilities for action. They help users understand the affordances [19]
of the objects of interest (here, the dots). Note that appearances may

be deceiving: a snapshot of a music staff does not afford the same

interactions as an interactive music application. Note too that in

addition to the perceived structure, users can also rely on available

commands and tools to discover the substrate’s capabilities.

4.2 Substrates manage constraints

Users dislike repetitive actions. For example, the grid layout of a

table provides a structure that affords entering values into cells. In

order to add together the numbers in a column, the designers could

provide a command that lets users select a column of numbers and

then apply the “Sum” command, which would enter the sum of

the numbers in the cell below the column. The user would then

have to re-select the cells and re-apply the “Sum” command each

time they change a value in the column. This is similar to most

current content-authoring applications: Diagram editors provide

commands for aligning objects, but not for keeping them aligned.

SomeWord processors provide commands for counting the number

of words in a selected piece of text, but do not update the word

count as the user edits the text.

The fundamental difference between the table described above

and a real spreadsheet is that the latter manages persistent rela-
tionships between cells: rather than having to add numbers each

time they make a change, users simply specify that a cell must

contain the sum of a set of cells, and the system maintains that con-

straint whenever a value changes. In other words, the power of a

spreadsheet formula comes from replacing the effect of a command

(adding a set of numbers) by a persistent relationship among these

numbers. We call this process the reification of an effect. Reifying
an effect is a form of transfer of responsibility from the user to

the system, whereby the user expresses a relationship and lets the

system maintain it.

attach detach

move

Figure 6: StickyLines: The usermoves an object (blue dashed

arrow) onto a StickyLine (horizontal line) to attach it and

away from it to detach it. When attached, the constraint (red

dot) ensures that the object moves (right blue dashed arrows)

with the StickyLine.

Note that we are not suggesting that applications should support
the kind of formulas found in spreadsheets. Formulas are good for

spreadsheets because spreadsheets manipulate numbers, and math

formulas provide a well-known way to define relationships among

numbers. Reifying effects into constraints should be designed to be

meaningful for the users in the target domain.

For example, designers of a diagram editor can reify visual rela-

tionships among objects into constraints such as alignment, inclu-

sion or distribution. StickyLines [11] illustrate how an alignment

constraint can be represented by a guideline to which objects are

attached (Fig. 6). Dragging the guideline moves the attached ob-

jects. This contrasts with traditional alignment commands or the

Alignment Stick [47], which let users align objects but do not retain

the alignment. StickyLines have been shown to be up to 40% more

efficient than traditional alignment commands both in time and

number of user actions [11].

As another example, designers of a word processor can reify

relationships among document elements such as words, paragraphs

and sections. Textlets [22] illustrate how users can assign be-

haviors to parts of a text document, such as counting words or

highlighting occurrences of a search pattern. Word counts and

search occurrences are updated as the user edits the text (Fig. 7).

This contrasts with traditional word processors, where users must

re-issue the word-counting command every time the text changes

and find occurrences one by one.

In summary, constraints bring power to substrates by letting

users specify persistent relationships rather than having tomaintain

them themselves. These constraints in turn provide meaning to the

substrate, by expressing design goals that users must otherwise

manage in their heads [40].

a

Countlet

count

19
Substrates
not only …

In order to combine power and
simplicity, we introduce Substrates,
which act as ``places for interaction''
where users can manipulate objects
of interest in a principled and
predictable way. Substrates not only
structure and contain data, but also
enforce constraints among objects
and manage dependencies with
other substrates. Users can ``tweak''
these relationships, add their own
and abstract them out into
templates. We first define substrates

b

Searchlet

duce Substrates, w

way. Substrates not

ther substrates. Us

fine substrates and

In order to combine power and
simplicity, we introduce Substrates,
which act as ``places for interaction''
where users can manipulate objects
of interest in a principled and
predictable way. Substrates not only
structure and contain data, but also
enforce constraints among objects
and manage dependencies with
other substrates. Users can ``tweak''
these relationships, add their own
and abstract them out into
templates. We first define substrates

substrates

search

Figure 7: Textlets: a A countlet is attached (blue dashed

arrow) to the selected text, creating a constraint (red arrow)

that displays the number of words in the text. b A searchlet
for the word “substrates” is attached (blue dashed arrow) to

the text; each occurrence creates a textlet.

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Mackay & Beaudouin-Lafon

Structural substrates Canvas substrates Display substrateData substrates

headers: [“Name”, “2020”, “2021”,
 …],
rows: [
 [“North”, 50, 65, 60, …],
 [“East”, 48, 52, 50, …],
 …
] type: “linechart”,

min: 0, max: 80,
lines: [
 { color: “blue”, label: “North”,
 values: [50, 65, …] },
 { color: “green”, …},
 …
]

type: “piechart”,
labels: [“2020”, “2021”, …],
colors: [“blue”, “green”, …],
pies: [
 { name: “North”, position: “topleft”,
 values: [15%, 20%, …] },
 { name: “East”, position: …},
 …
]

North, 2020, 50
East, 2020, 48
South, 2020, 34
West, 2020, 78
…

a b

c f

he

gd

Figure 8: a A data substrate provides input to b a structural substrate representing a table, which itself provides input to two

other structural substrates representing a c line plot and a d pie chart. Each structural substrate is represented by a canvas

substrate containing graphical shapes (e , f , g) which are finally rendered as pixels on the h display substrate. The red

arrows represent dependencies where the head substrate reacts to changes in the tail substrate.

Interactive and polymorphic constraints. Once an effect has been

reified into a constraint, making it interactive adds power. For exam-

ple, spreadsheet formulas can refer to a range of cells by specifying

its two ends, e.g., A5:A10. Ranges make formulas more powerful be-

cause the result is automatically recalculated when the user inserts

or deletes rows within the range. Ranges can also be edited directly:

Editing a formula in Microsoft Excel highlights the relevant ranges;

The user can then adjust the range simply by dragging its handles.

Designers can turn the constraints that result from reifying

effects into manipulable objects. For example, users can move a

StickyLines guideline as if it were any other object. They can also

add and remove objects from the alignment simply by dragging

them next to or away from the guideline. In Textlets, the scope

of a word-counting “countlet” can be adjusted by dragging its end

handles. These interactions are so simple and obvious that they

were inferred almost immediately by users, what psychologists call

“one-trial learning”.

Designers can alsomakemore powerful polymorphic5 constraints
that work with multiple types of objects. For example, an alignment

constraint can be applied to different shapes in a diagram editor,

but also in other substrates such as the icons in a file manager, the

windows on the desktop, or the text margins in a word processor.

Turning constraints into objects and making them polymorphic

encourages user exploration by letting them experiment with what

works and what does not. This in turn helps them understand

the underlying principles of the substrates and enables technical

reasoning [45, 48].

5
Polymorphism is one of the principles of Instrumental Interaction [8], defined as the

ability for a tool to act upon objects of different kinds.

4.3 Substrates manage dependencies

Designers need to understand both how the underlying data struc-

tures affect how objects are presented to the user and the corre-

sponding effect on how users interact with them. The substrates

illustrated in Figure 5 are all visual: Each set of dots is represented

by an ordered list within a canvas substrate. However, the musical

score, the plot and the map in Figures 5b,c,d have a richer structure

than just a set dots. We define structural substrates as non-visual
substrates that represent these underlying structures. For example,

a musical score substrate specifies the tones, a plot substrate de-

scribes the axes and the coordinates of each data plot, and a map

substrate determines the location of each address. These structural

substrates must then be linked to canvas substrates to produce

visual representations.

Dependencies tie substrates together (Fig. 8). For example, the

canvas substrate representing the line plot (Fig. 8f) is tied to the

structural substrate describing the content of the plot (Fig. 8c).

Structural substrates may themselves depend on other structural

substrates. For example, the plot substrate (Fig. 8c) is tied to a

table substrate (Fig. 8b) that holds the data being plotted. The table

substrate, in turn, is tied to a data substrate (Fig. 8a), e.g., a database.
On the visual side, the content of the display is a grid of pixels

that can be thought of as a display substrate (Fig. 8h) tied to the

various canvas substrates (Fig. 8e,f,g). In practice, however, the

display substrate is internal to the operating system and is not

accessible as a full-fledged substrate. Designers may also create

auditory or haptic substrates to support other modalities.

Substrates are reactive: they react to changes in the substrate(s)

that they depend on. Figure 8 illustrates these dependencies and

Interaction Substrates:
Combining Power and Simplicity in Interactive Systems CHI ’25, April 26-May 1, 2025, Yokohama, Japan

shows how multiple canvas substrates represent the same source

data (Fig. 8a) as a table (Fig. 8b→e), a line graph (Fig. 8b→c→f),

and a pie chart (Fig. 8b→d→g). A change in the data substrate

updates the other substrates and, ultimately, the display.

Conversely, substrates must be able to react to user input: if a
user tries to move a dot in the line plot, the substrate may ignore the

change if the dot location is controlled by a dependency. Alterna-

tively, it may interpret the user action as a change to the underlying

substrate. For example, moving a dot in the line plot could update

the data table but constrain the movement vertically. Moving a dot

in the map of Figure 5d could snap it to the nearest address.

Finally, the organization of substrates into multiple levels opens

up interesting collaboration possibilities. Sharing the data table

substrate allows one user to view it as a line plot and another user

as a pie chart, with both representations being updated as the data

changes. Alternatively, they could share the canvas substrate and

see andmanipulate the same representation, as inWebstrates [32].

In summary, dependencies add power by enabling complex com-

binations of substrates. They also bring simplicity, since changes

propagate automatically, thus relieving users from duplicating them

across multiple representations.

4.4 Substrates enable adjustments: tweaking

While constraints and dependencies provide power, they can also

be ... constraining. Users often want to make specific adjustments to

objects without losing the benefits of the underlying constraints. For

example, presentation software includes master slides that specify

the size and font of each text box. When a title box is too small

for the intended text, the user typically adjusts the size or font to

make it fit. This unfortunately breaks the master slide’s constraint.

A better solution would record that the constraint has been relaxed

but is still in place if, for example, the title is shortened later.

a

tweak

b Style

Color

Shadow

darker

Figure 9: Tweaking: a The object’s center point determines

its location on the StickyLine (left). The user can offset the

attachment point to improve the visual alignment (right).

b Styles automatically copy their attributes to attached

objects. The user can independently adjust these constraints

to transform the copied value, here, to darken the color.

StickyLines introduced the notion of a “tweak” (Fig. 9a): When

the user moves an object attached to a guideline with arrow keys

instead of the mouse, the system records the offset as a reified

object or “tweak”. The tweak is attached to the object and is applied

when moving the object to a different StickyLine. Styles could use

a similar approach, so that the user could tweak the brightness of

an object’s color (Fig. 9b).

More generally, a tweak adjusts the value assigned to an object’s

attribute by a command or constraint. A tweak is persistent: it

adjusts the value each time the attribute changes. Changing the

style’s color to green in Figure 9 would change the logo’s back-

ground color to a darker green. Tweaks add power by letting users

loosen constraints instead of reverting to manual control and losing

the benefit of the constraint entirely.

4.5 Substrates enable specialization: templating

Users often want to customize their environment by creating spe-

cialized versions of the objects provided by an application. A com-

mon approach is to provide templates that can be filled out by the

user. However, creating templates is often complex. Substrates sup-

port a simple way of defining templates: The user starts with an

existing substrate, with its objects and constraints, and replaces

some of the objects with placeholders. The resulting template can

then be used as any other substrate. Figure 10 shows how a simple

template can be created from an alignment guideline.

Spreadsheet users could create templates from a set of cells and

formulas with placeholders for selected data. Each formula is itself

a template because cell references are relative rather than absolute.

This is part of the power of spreadsheets: formulas can be reused

in different contexts and yet “do the right thing”.

Transforming a collection of objects and constraints in a sub-

strate into a template is a powerful way of abstracting behavior

and is also simpler than directly creating the template from scratch,

such as when defining master slides with presentation software.

Substrates give users more flexibility, especially when combined

with tweaking: A user can apply a template and tweak the resulting

instance, yet keep the benefit of the persistent constraint between

the template and the instance.

placeholder placeholder

template

attach

Figure 10: Templating: The user begins with a StickyLine

with three attached logos (top) and creates a template by

transforming the left two into placeholders but keeps the far

right logo as is (bottom). A new logo can then be added.

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Mackay & Beaudouin-Lafon

Substrate

Dependencies

Objects

Constraints
 Commands

Objects

Constraints

Dependencies

 Commands

Figure 11: Commands create, delete or modify (blue dashed

arrows) objects, constraints, dependencies and substrates.

4.6 Summary

Figure 11 summarizes the concepts involved in substrates. A sub-
strate contains objects and constraints that apply to these objects, and
maintains these constraints in response to changes from commands.
Substrates can be linked to other substrates through dependencies
that express how the state of the objects in the source substrate

affects the objects in the target substrate. Dependencies are reactive

and update the target objects’ state whenever the corresponding

source objects change.

5 Assessing Substrates using Generative Theory

One of the challenges in proposing a new conceptual model is how

to justify and evaluate it. Running a controlled evaluation study,

especially a quantitative one, on such a rich topic is impractical:

because design is such a complex process, it would be difficult to

attribute the differences observed between two designs — one with

and the other without substrates — solely to the use of the concept.

We thus use a two-pronged strategy that combines analytical and

empirical assessments based on the Generative Theories of Interac-

tion [7] approach. A Generative Theory of Interaction is grounded

in theories of human behavior and operationalizes these theories

into actionable concepts and principles. Researchers use the fol-

lowing lenses to apply these concepts and principles to existing

systems and new design problems:

(1) Analyze: Can existing systems be deconstructed in terms

of the concepts and principles of the theory?

(2) Critique: If they are present, do they improve or hinder the

system? If they do not exist, what problems does this cause?

Could applying the principles improve the system?

(3) Construct: Can these concepts and principles inspire new

ideas when designing a new system?

We found that the principles introduced by Instrumental Inter-

action [7, 8], namely Reification, Polymorphism and Reuse, apply

to Substrates. Whereas Instrumental Interaction focuses on com-

mands, reified as instruments, Substrates focus on the effects of
these commands, reified into substrates and constraints.

Table 1 lists the original principles of Reification, Polymorphism

and Reuse (blue boxes) from [8] as well as two new principles, Ad-

justment and Specialization (purple boxes), with brief definitions

and examples for each. The left column refers to instruments that re-

sult from reifying a command, whereas the right column introduces

substrates that result from reifying the effect of a command.

Both instruments and substrates can be polymorphic i.e. ap-

plied to objects of different types. The principle of Output Reuse

introduced in Instrumental Interaction corresponds to reusing the

objects, e.g. through copy-pasting. We extend it to the reuse of

constraints. On the other hand, the new customization principles

— Adjustment and Specialization — are also directly relevant to

Instrumental Interaction. The previously mentioned principles of

tweaking and templating apply to substrates. We next introduce

two corresponding principles for instruments: tuning (adjusting a

command) and currying (specializing an instrument).

The next subsections describes the theoretical underpinnings

of Substrates, apply the analytical and critical lenses to existing

commercial systems and research projects, and reports on applying

the constructive lens in three HCI classes.

5.1 Theory: Affordances, Technical Reasoning,

Naive Physics and Co-adaptation

Instrumental Interaction and Substrates are grounded in theories of

human behavior, including affordances [19], technical reasoning [45,

46] and co-adaptation [14]. Gibson’s theory of affordances supports

our concept of substrate in that the context of an object affects its

perception and therefore the perception of its affordances. This

was illustrated in Figure 5 where the context of the dots sets the

expectation for certain capabilities for interaction
6
.

The combination of tools
7
and substrates further reinforces the

perception of potential affordances. For example, a text entry tool

evokes the ability to add text, which the usermay not have perceived

otherwise. Conversely, a substrate that contains text evokes the

ability to edit this text, suggesting the existence of a text entry tool.

If text is visible in the substrate but no text entry tool is present,

the user may conclude that the text is not editable — maybe it is an

image instead.

Technical reasoning focuses on human tool use and describes

how humans’ knowledge of “abstract technical principles” let them

take advantage of object and tool properties to solve interaction

problems. In the physical world, a flat, thin rigid object such as a

knife can cut through softer objects. Our recent work has shown

that technical reasoning is at play when interacting with digital

content [48, 49], based onwhat we call “interaction knowledge”, and

that users can use digital tools in unusual ways to solve problems.

The use of tools, however, cannot be dissociated from the objects

they interact with and their context, in that the operation of the

tool may be constrained by the properties of the objects and of its

surroundings. In other words, the substrate and the constraints it

embodies affect the way tools work with the content. For example,

in a word processor, text is organized into lines inside pages — a fun-

damental constraint of a text substrate. All text editing tools must

work with these constraints. Conversely, the constraints imposed

by a substrate suggest specific tools for managing them. In word

processing, tools should let the user control text layout constraints,

such as line spacing and margins.

6
Note that these may be false affordances [18] if the capability is not actually available.

7
Atau Tanaka [55] offers a nuanced distinction between musical instruments designed

for creative expression and tools designed to accomplish tasks. For the purposes of

this paper, we use the terms “instrument” and ”tool” interchangeably.

Interaction Substrates:
Combining Power and Simplicity in Interactive Systems CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Table 1: Expanded set of Instrumental Interaction principles. Original definitions are blue; new principles are purple.

Command focus Effect focus

Reification Transforms a command into an instrument
Example: “Fill” command becomes the paint bucket tool

Transforms command effects into a substrate
Example: Calculation becomes a spreadsheet formula

Instruments let users: Substrates let users:

Polymorphism Apply a command to multiple types of objects
Example: Change color of shapes, text and backgrounds

Apply a constraint tomultiple types of objects
Example: Align shapes, text, images and windows

Reuse Apply previous commands to objects
Example: Execute a macro

Apply previous effects to objects
Example: Copy-paste objects and/or constraints

Specialization Curry a parameter value to create a new instrument
Example: Create personalized format brushes

Create a template from objects and constraints
Example: Create a master slide with placeholders

Adjustment Tune command parameter values
Example: Click-drag to resize while creating a rectangle

Tweak command effects
Example: Offset a logo from a guideline

Technical reasoning is strongly related to diSessa’s notion of

“naive physics” [15]. A key difference is that naive physics empha-

sizes the fact that the “laws” that are inferred are not necessarily the

actual laws of physics. Indeed, users often make incorrect assump-

tions about what is and is not possible with digital content. This is

often due to the differences in how applications deal with similar

content, making it difficult to infer general “laws of interaction”.

The concept of naive physics therefore encourages designers to

create substrates and tools with consistent behaviors that users can

easily understand. Designers should also consider extending exist-

ing substrates with new types of constraints rather than creating

new substrates from scratch.

Finally, the importance of customization is inspired by the phe-

nomenon of co-adaptation [14], which describes how animals both

adapt to their environment but also actively adapt it for their own

purposes. Mackay [35] explores this phenomenon with respect to

human users and describes the related phenomenon of reciprocal
co-adaptation [7] where human users and intelligent agents both

learn (or adapt to) and modify (or adapt) each other’s behavior.

Co-adaptation describes the process by which users learn rules to

“master” the predicted use of the system, but also take advantage

of those rules to create custom solutions for their particular needs.

This implies that the underlying interactive systems, in this case

substrates, need predictable rules and behaviors that enable user

customization.

In summary, the theories of affordances and technical reasoning

strongly support the relevance of substrates as a new concept,

while naive physics suggests that substrates should be generic

and extensible, and co-adaptation justifies the need for supporting

customization. These theories also emphasize the duality between

tools and substrates, which we see as a promising avenue for design.

5.2 Analysis and critique of existing systems

Content substrates. We can analyze existing content-authoring

applications in terms of instruments and substrates. The work area

where users create content is a substrate: it contains the objects that

make up the content and the application imposes constraints on

them, such as the layout of a text document into lines and pages in

a word processor, the front-to-back ordering of shapes in a diagram

editor, or the stacking of layers in an image-editing application.

However, these substrates are relatively limited and applying

effect reification could greatly improve their power.We see examples

of effect reification in research projects such as Object-Oriented

Drawing [58], where the user can create constraints linking the

values of object attributes so that, for example, they have the same

color. Para [27] lets users create a collection of shapes and vary

parameters along the collection. The relationships are maintained

and/or adjusted as the user makes changes, such as mapping the

size of the shapes to their rank in the collection.

Existing applications would also benefit from unifying the con-

straints they manage. For example, Microsoft Word features differ-

ent commands for numbering lists, sections, figures and references,

each with their own controls. Textlets [22] address this problem

by reifying numbering into number and reference templates, which

both unify and generalize the concept of numbering.

Inspectors and styles as substrates. Inspectors can be viewed

as substrates that show a target object’s attributes as editable values.

However, the link between the attributes and the object may not

be clear. Inspectors can set command parameters such as the brush

color, change attributes of selected objects such as their text size,

or change attributes of a style, which in turn affect various objects

in the content.

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Mackay & Beaudouin-Lafon

a

b

Figure 12: Currying a command. A brush tool requires two

parameters: paint color and brush shape. By currying the

a color and then b brush shape, the user can create more

specialized brushes to suit their needs.

Rather than using a single inspector for different purposes, which

causes confusion and increases complexity, the user should be able

to create multiple inspectors that target different objects, similar to

the attribute objects in Object-Oriented Drawing [58]. A similar

problem occurs with the search-and-replace command, which per-

forms only one search at a time. By reifying the search command

into a command and a substrate, Searchlets [22] let users manage

multiple search-and-replace tasks in parallel.

Structural substrates. Content-authoring applications feature

a structural substrate that underlies the visual representation of

the content. It can be a simple list, such as the list of layers in an

image-editing application or the list of slides in a presentation ap-

plication, or a more complex structure, such as representing a text

layout or 3D model. Different visualizations may show different

aspects of the structure: Users can rearrange slides in a light table or

reorder layers in a “layers” panel. However, as with inspectors, cur-

rent applications usually feature a single alternative visualization.

What if the user could create several light tables to test alternative

presentation orders for different audiences? Or compare the effects

of different layer orders in a diagram editor?

Interacting with content through multiple views synchronized

through a shared structural substrate provides users with greater

power of expression. For example, a word processor’s outline facil-

itates (re)organizing content. Histomages [10] lets users modify

images through pixel-based manipulations of an image’s histogram,

enabling otherwise tedious transformations such as changing the

sky’s color. Similarly, a diagram editor could provide both a classic

substrate that manages geometric shapes and a substrate that man-

ages the corresponding planar map [3], which would be updated

dynamically when moving the shapes in the canvas substrate [2].

Other examples of multiple views include WritLarge [59] and its

different levels of interpretation of pen strokes, Sensecape [53]

and its canvas and hierarchy views for sensemaking, Sketch-n-

Sketch [23] and its code and output views, and visualization ap-

plications such as VegaLite [50] or StructGraphics [56] where

data, its visualization and their mapping are all separately editable.

Adjustment: Tweaking Constraints and TuningCommands.
Tweaking involves overriding or offsetting a constraint in order to

make a small adjustment without losing the benefit of the original,

persistent constraint. In current systems, the only solution is to

remove the constraint altogether. For example, when applying a

style to an object, if one of the attributes of the object is changed,

the link to the style, at least for that attribute, is lost. Tweaking lets

users make small changes such as offsetting an aligned object or

making a color a bit brighter (Fig. 9), so that this change will be

applied when the base color of the style is changed.

Interestingly, the concept of adjustment can also be applied to

the instrument side of Table 1. We define Tuning as the ability to

adjust the parameters of a command as it is issued. For example,

users can interactively define the size of a shape while creating

it. Similarly, the user could select a color and drag the mouse to

interactively adjust its brightness. Unlike a tweak, this adjustment

does not persist — neither the instrument nor the object remember

the adjustment that was applied, the object simply receives the

modified color.

Specialization: Creating templates and currying commands.
Templates exist in a number of applications, but with limited capa-

bility. In many cases, templates can only be created for an entire

document, not as a set of objects, constraints and placeholders that

can be used in different places within the document. Presentation

applications use templates (or slide masters) that can be applied to

individual slides, but constrain the set of placeholders to specific

items such as the title and body text. Our approach instead lets

users capture a set of objects and constraints into a template that

can be reused with different objects. For example, a user might

create a two-column slide in a presentation application and then

extract a template containing just the layout information for use

with other content.

Templates support customization by letting users create special-

ized substrates. As with Adjustment, the Specialization principle

can also be applied to the instrument side of Table 1. Applying a

command often requires specifying parameters. For example, when

picking a paintbrush tool, the user must also select the color and

brush shape. Paintbrush tools remember the last parameters used,

but if the user wants to alternate between two or more brush shapes

and colors, they must re-specify them each time they pick up the

tool. Having access to the “large blue brush” and the “thin red brush”

would be simpler and more efficient.

The concept of currying from functional programming helps us

achieve this effect. Currying specializes a function by fixing one

of its parameters. Here, it lets users create specialized copies of a

command by fixing one or more parameters. Figure 12 shows the

use of currying to first specialize the color of the paintbrush tool

and then its brush shape.

Users can thus create the set of commands and tools that fit their

needs and adjust this set as they go. Except for the interface of the

reMarkable tablets
8
, which features two pen tools that can be

configured independently, we are not aware of any system that

supports currying as a general principle.

In summary, on the command side, users should be able to create

personalized tools based on existing ones. On the substrate side,

they should be able to create their own substrates to fit their needs.

The former increases simplicity while the latter increases power.

User interface substrates. Beyond the content itself, applica-

tions may include other substrates. The interface of the application,

which organizes the menus, toolbars, inspectors, panels and other

floating windows, can be seen as a substrate, designed for control-

ling the application’s content. This substrate is typically very rigid,

8
https://remarkable.com

https://remarkable.com

Interaction Substrates:
Combining Power and Simplicity in Interactive Systems CHI ’25, April 26-May 1, 2025, Yokohama, Japan

a b

Figure 13: a Students create low-resolution paper prototypes and b high-resolution video prototypes. This user sees her

previous style modifications to the blue square reified into a semi-circular clipboard substrate that is being dragged to an

“action history” panel. The hi-res version shows how previous style modification sequences can be copied, tweaked and reused.

which is surprising considering how important it is for creative pro-

fessionals to organize their physical space according to their needs.

Users of content-authoring applications can sometimes rearrange

the panels, but rarely their content, and even more rarely create

their own toolbars and panels.

Similarly, the organization of windows on the screen is left to

the window manager, with little control given to the user beyond

moving and resizing windows. A window substrate would let users

organize them more freely, and include operations such as tabbing,

turning and snapping [5] or laying them out in 3D [9]. Treating

windows as rectangular shapes would let users apply constraints,

such as alignment, and commands, such as zooming, thus bringing

standard features from diagram editors to window management.

This analysis shows that, although many existing systems in-

clude some characteristics of substrates, most lack a coherent set

of rules that help users understand how to interact with them. We

argue that identifying the basic characteristics of a substrate and

corresponding actionable principles for creating them can help de-

signers increase the power and simplicity of both existing and new

interactive systems.

5.3 (Re)-Constructing Google Slides

We have taught the theory of Instrumental Interaction over the past

decade, but have only recently begun using the Generative Theory

approach with modules on substrates, tweaking and currying. This

section describes our experiences teaching these new concepts to

graduate HCI students.

Teaching Approach. We included substrates in two seven-week

graduate-level HCI classes (approximately 32 students per year) at

our university and in a one-day Master Class with 20 participants

from three other universities. Each class begins with a description

of the Generative Theory approach, followed by lectures on the

concepts of instruments and substrates. We also ask students to

engage in various exercises to help them to understand related

theories — affordances, technical reasoning and co-adaptation —

with both physical and digital examples.

We explore the Google Slides’ interface, chosen for its famil-

iarity and ease of access. Google Slides poses many interesting

design challenges: Students can consider individual slide creation,

animation within or across slides, one- or two-dimensional views

of groups of slides, slide masters (or templates), as well as differ-

ent modes for creating, sharing, editing or presenting slides. After

demonstrating how to analyze and critique Google Slides, we

illustrate how to use the principles to brainstorm new forms of

interaction that offer more power, with greater simplicity. Next,

students form groups and select a particular aspect of Google

Slides to redesign by applying the concepts of instruments and

substrates and the associated principles. We ask them to first use

Google Slides and identify a feature or interaction that annoys

them
9
. Finally, we ask students to create a new design concept

and, in the two seven-week courses, illustrate it with a series of

low-fidelity paper-based video prototypes [37] that show how the

concept addresses each of the principles. After we critique their

designs, they revise their concepts and create either a high-fidelity

video prototype or a working demonstration. We upload selected

projects into our Interaction Museum website
10
.

Results. The following examples, drawn from student projects

in 2023 and 2024, illustrate how students applied the concepts of

instruments and substrates to the re-design of Google Slides.

History – One project explored how to reifiy localized histories

of the user’s previous commands. Figure 13 shows a low-resolution

paper prototype and a high-resolution video prototype. The system

captures in-context local histories of the user’s previous commands

with respect to a particular graphical object. The user hovers the

cursor to pop up a semi-circular list of these changes, which can

be moved to an “action history” panel. Users can also copy, delete

and rearrange the commands to create re-usable macros. Both the

commands and the panel can be tweaked and the collapsed set

9
Interestingly, this is very difficult for many HCI students, who are so accustomed to

traditional menu-and-button interfaces that they do not notice when the interaction is

cumbersome or confusing.

10
http://interaction.museum. See the Appendix for an example of how one group

systematically illustrated their design.

http://interaction.museum

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Mackay & Beaudouin-Lafon

a b

Figure 14: The user can a reify, tweak and reuse the space around objects and distances between margins, and b reify the

margins in the layout grid as manipulable objects.

of style modifications can be treated as a visible, interactive style

command that can be applied to other objects.

Compared to Google Slides, this project both increases the

functionality available to the user (more power), while offering an

easy-to-use interaction style (greater simplicity). Instead of Google

Slides’ limited version history, it offers a personalized, detailed set

of recent user actions that can be easily reused.

Margins – Two groups considered the problem of managing mar-

gins and distances between objects in a slide. One group reified

the margins and their measurements surrounding each graphical

object, creating interactive substrates that can be copied, pasted

and tweaked, as well as saved as a sort of reusable “margin style”

(Fig. 14a). Another group reified the margins in a grid layout, trans-

forming the negative space between the slide content into a kind

of flexible “cement” that preserves the inter-object relationships

even as the content changes. This serves as a flexible, interactive

substrate that applies polymorphically to text, shapes and images,

and supports user-defined constraints that dictate how the objects

fit together. In both cases, users can preserve and reuse tweaks that

offset specialized content from the margin and curry personalized

tools that create different kinds of constraints.

Compared to Google Slides, both projects offer greater power of

expression by allowing users to define their own reusable margin

styles or margin constraints. Both offer more precise control of

the layout than Google Slides, yet provide a simpler, more direct

form of interaction with the margins, instead of having to find the

appropriate pull-down menu and fill in points or percentages of

line height in a dialog box.

Color – Another group created more sophisticated, interactive

and reusable color palettes (Fig. 15). Users can select a sequence of

colors in the color space of their choice, which is then reified into

a path that retains their relative distances within the underlying

color space. Users can move either points or the whole path, or

transfer a path into another color space. Their concept is explicitly

designed to support color tweaking. For example, paths should be

tweaked when the color space changes from purple to yellow, to add

more contrast. Users can reify and tweak any color relationship or

attribute, e.g. hue, saturation, transparency, and apply those tweaks

to any colored object in the canvas. Users can also visualize current

and previous color paths to explore the color space.

Google Slides provides either a palette of selected colors or a

dialog box that accepts RGB numbers or a cursor to pick a particular

hue. Unlike this project, users cannot specify relationships among

colors, nor make fine-grained tweaks of those relationships. The

students’ color project offers much greater power, with a much

greater set of functions, but the interaction itself is actually more

direct and simpler for the user to control.

Translation – Another group explored how to add AI-based trans-

lation to Google Slides. After initially getting stuck and reverting

to menu-based interaction, one student suddenly realized that she

could create a “translation brush” that could be loaded with a par-

ticular language and brushed onto any text. From there, the group

explored how to create language-based templates where users could

create place-holders for text-based content and then generate new

slides with the appropriate translations. They considered how to

tweak specific translations and rearrange the space to accommodate,

for example, different sizes (German takes more space than English)

and different orientations (from English to Chinese, Hebrew or

Persian). Thinking in terms of instruments and substrates helped

them offer users a far more powerful set of translation capabilities,

while creating a much simpler form of interaction.

Google Slides does not currently support automated text trans-

lation and only lets users turn spell checking on or off. This project

lets users not only specify the scope of the text, but also the target

language. The same direct interaction with a “translation” brush

would work equally well for spell- and grammar-checking, offering

a simpler yet more powerful approach to all three.

Other projects – Students generated a variety of other interesting

concepts, including: reifying animation paths that can be applied

polymorphically within and across slides; redesigning presentation

mode to handle both live and recorded interaction with a timeline

substrate; and reifying a “jump” from one part of a presentation to

another to create interactive shortcuts. In each case, the students sig-

nificantly improved the interaction to Google Slides through the

Interaction Substrates:
Combining Power and Simplicity in Interactive Systems CHI ’25, April 26-May 1, 2025, Yokohama, Japan

a b

Figure 15: The high-res video prototypes show how the user can a draw a path through a color space where each point in the

path is dynamically linked to three buttons (normal, hovered and pressed. Each color space has different characteristics, so the

path can be tweaked if, for example, the colors shift to shades of yellow. The user can also b save select specific points and

relationships in a different color space, and use them to define relationships between image elements.

use of substrates and instruments, with more powerful interfaces

that offer users added functionality while preserving or increasing

the simplicity of interaction with that functionality.

The inclusion of substrates, tweaking and currying to the most

recent (2023 and 2024) versions of the course produced more inno-

vative projects that were explored in greater depth than in previous

years. The Masters students’ course evaluations showed that the

course was challenging but the majority said they “learned alot”:

“We learned very useful principles that we can use in the future for

designing”. One student said: “The tools are really powerful when

used correctly.” and another: “... loved creating one single tool and

applying generative theory of HCI.” 86% of the students said they

“learned new design principles” and 76% said they “expected to use

them in the future”.

Although projects tended to focus on either instruments or sub-

strates, all but one of 16 group projects
11

successfully generated

examples of all ten principles presented in Figure 1. Applying these

principles sparked many ideas and generated a great deal of ex-

citement as they explored how to add both power and simplicity

to Google Slides. Several students have successfully transformed

their projects into Masters and Ph.D. theses as well as several recent

HCI publications.

6 Discussion

6.1 Power and simplicity

We are interested in supporting experts, not just novices, and in

providing an incrementally learnable path from novice to expert.

While there are inherent trade-offs between power and simplicity,

we have observed that the reification of commands into tools tends

to increase simplicity, while the reification of effects into constraints

tends to increase power. A path from novice to expert can be created

by first offering tools and substrates with limited capabilities and

then expanding them. For example, a paint tool could be curried

to offer a set of paintbrushes with basic colors and a standard

brush shape, then the user could be given access to the full paint

tool with its inspector. Similarly, an alignment guideline could be

made available first in its simplest form, then a more advanced

11
from the seven-week HCI classes

version could provide additional capabilities, such as tweaking or

distribution.

Instruments and substrates also offer users flexibility as they

shift the focus of their tasks. Mackay’s comparative analysis of

interaction techniques [36] showed that, given an identical task

and identical numbers of actions, the users’ preferred interaction

technique varies according to their intent — in that case, copying

vs. creating something new — and a corresponding difference in

which tools were preferred and more efficient. By giving users more

diverse types of tools, but also letting them transfer some of their

agency to the system with constraints, users gain new ways of

adapting their practice to the task at hand. However, beyond the

classical measures of time and error, we need additional objective

measures of both power and simplicity in order to operationalize

these differences into the design of controlled experiments. These

measures should target not only short-term use, but also long-term

use such as learning and recall.

6.2 Limitations and directions for research

Evaluating a conceptual model is challenging. While our experience

using and teaching these concepts over the past few years has

convinced us of its power, we still need better ways of assessing

the added value of applying these concepts to real-world design

problems, in both the short and long term.

Another challenge is turning designs based on these concepts

into working software. Existing user interface toolkits and frame-

works such as JavaFX,
12

React
13

or Qt
14

are based on program-

ming patterns that do not support substrates: They decouple tools

from substrates and do not support the reactive behavior of con-

straints and dependencies. Future work should create dedicated

software toolkits that facilitate implementation of systems that

embody the concepts presented in this paper. Over time, we hope

that a set of “standard” substrates will emerge to facilitate further

development.

Finally, even though we developed substrates in the context

of graphical user interfaces, we believe that the concept can be

applied, with adaptations, to other forms of interaction, including

12
https://openjfx.io

13
https://react.dev

14
https://www.qt.io

https://openjfx.io
https://react.dev
https://www.qt.io

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Mackay & Beaudouin-Lafon

Virtual/Augmented Reality, tangible interaction, speech-based and

multi-modal interaction. For example, Reactile [54] uses tangible

interaction to program a swarm of robots with constructs similar

to substrates and constraints.

7 Summary and Conclusion

Interactive systems face a fundamental trade-off between simplicity

of interaction and power of expression. Our key insight is to focus

on the context in which users manipulate objects of interest and

capture it with the concept of Substrate. Substrates provide an

environment that not only contains the user’s objects of interest,

but also manages constraints among these objects and dependencies

with other substrates. Constraints and dependencies transfer the

burden of maintaining invariants within and across substrates from

the user to the system.

We also introduce two new generative principles to support cus-

tomization — Adjustment and Specialization — and show that they

apply to substrates as well as instruments. Adjustment includes tun-
ing commands to dynamically modify parameters while applying

them and tweaking constraints to make small but persistent offsets.

Specialization includes currying commands to fix their parameters

and creating templates from substrates.

This paper offers four key contributions: First, we introduce the

concept of substrate and its key components: objects, constraints
and dependencies. Second, we introduce two new design principles,

Adjustment and Specialization, that enable customization. Third, we

provide in-depth descriptions, with examples, of the characteristics

of substrates. Finally, we illustrate how to meet the challenge raised

in [7] by demonstrating how to apply the analytical, critical and

constructive lenses of a Generative Theory of Interaction to assess

the value of the concept of substrates and its associated principles.

In the future, we hope that these ideas will contribute to the

creation of rich and versatile “places for interaction” where digital

tools and digital content are designed to be as comprehensible,

simple and powerful as tools and materials in the physical world.

Our long-term goal is to create a foundation for a “digital physics

of interaction”, similar to diSessa’s “naive physics” but for the digital

world, where users create mental models based on a coherent set

of underlying mechanisms that dictate how to interact with digital

material. We hope this work will encourage further exploration of

this design space.

Acknowledgments

We thank the many students and colleagues who contributed ideas

and discussions over the years, especially: Jessalyn (Sally) Alvina,

Matthew Beaudouin-Lafon, Susanne Bødker, Marianela Ciolfi Felice,

Jérémie Garcia, Camille Gobert, Jun Kato, Germàn Léiva, Carla Grig-

gio, Viktor Gustaffson, Clemens Klokmose, Joe Malloch, Nolwenn

Maudet, Joanna McGrenere, Arvind Satyanarayan, Theophanis (Fa-

nis) Tsandilas and Anastasiya Zakreuskaya.

This work was partially supported by European Research Coun-

cil (ERC) Advanced Grants № 321135 “CREATIV: Creating Co-

Adaptive Human-Computer Partnerships” (P.I. Wendy Mackay)

and № 695464 “ONE: Unified Principles of Interaction” (P.I. Michel

Beaudouin-Lafon) under the European Union’s Framework 7 and

Horizon 2020 research and innovation programmes.

References

[1] Caroline Appert, Michel Beaudouin-Lafon, and Wendy E. Mackay. 2005. Context

matters: Evaluating Interaction Techniques with the CIS Model. In People and
Computers XVIII — Design for Life, Sally Fincher, Panos Markopoulos, David

Moore, and Roy Ruddle (Eds.). Springer London, London, 279–295.

[2] Paul Asente, Mike Schuster, and Teri Pettit. 2007. Dynamic planarmap illustration.

ACM Trans. Graph. 26, 3 (jul 2007), 30–es. https://doi.org/10.1145/1276377.

1276415

[3] P. Baudelaire and M. Gangnet. 1989. Planar maps: an interaction paradigm

for graphic design. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’89). ACM, New York, NY, USA, 313–318. https:

//doi.org/10.1145/67449.67511

[4] Michel Beaudouin-Lafon. 2000. Instrumental Interaction: An Interaction Model

for Designing post-WIMP User Interfaces. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (The Hague, The Netherlands) (CHI ’00).
ACM, New York, NY, USA, 446–453. https://doi.org/10.1145/332040.332473

[5] Michel Beaudouin-Lafon. 2001. Novel interaction techniques for overlapping

windows. In Proceedings of the 14th Annual ACM Symposium on User Interface
Software and Technology (Orlando, Florida) (UIST ’01). ACM, New York, NY, USA,

153–154. https://doi.org/10.1145/502348.502371

[6] Michel Beaudouin-Lafon. 2017. Towards Unified Principles of Interaction. In

Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter (Cagliari,
Italy) (CHItaly ’17). ACM, New York, NY, USA, Article 1, 2 pages. https://doi.

org/10.1145/3125571.3125602

[7] Michel Beaudouin-Lafon, Susanne Bødker, and Wendy E Mackay. 2021. Genera-

tive theories of interaction. ACM Transactions on Computer-Human Interaction
(TOCHI) 28, 6 (2021), 1–54.

[8] Michel Beaudouin-Lafon and Wendy E. Mackay. 2000. Reification, Polymorphism

and Reuse: Three Principles for Designing Visual Interfaces. In Proceedings of
the Working Conference on Advanced Visual Interfaces (Palermo, Italy) (AVI ’00).
ACM, New York, NY, USA, 102–109. https://doi.org/10.1145/345513.345267

[9] Olivier Chapuis and Nicolas Roussel. 2005. Metisse is not a 3D desktop!. In

Proceedings of the 18th Annual ACM Symposium on User Interface Software and
Technology (Seattle, WA, USA) (UIST ’05). ACM, New York, NY, USA, 13–22.

https://doi.org/10.1145/1095034.1095038

[10] Fanny Chevalier, Pierre Dragicevic, and Christophe Hurter. 2012. Histomages:

fully synchronized views for image editing. In Proceedings of the 25th Annual ACM
Symposium on User Interface Software and Technology (Cambridge, Massachusetts,

USA) (UIST ’12). ACM, New York, NY, USA, 281–286. https://doi.org/10.1145/

2380116.2380152

[11] Marianela Ciolfi Felice, Nolwenn Maudet, Wendy E. Mackay, and Michel

Beaudouin-Lafon. 2016. Beyond Snapping: Persistent, Tweakable Alignment and

Distribution with StickyLines. In Proceedings of the 29th Annual Symposium on
User Interface Software and Technology (Tokyo, Japan) (UIST ’16). ACM, New York,

NY, USA, 133–144. https://doi.org/10.1145/2984511.2984577

[12] Andy Cockburn, Carl Gutwin, Joey Scarr, and Sylvain Malacria. 2014. Supporting

Novice to Expert Transitions in User Interfaces. ACM Comput. Surv. 47, 2, Article
31 (Nov. 2014), 36 pages. https://doi.org/10.1145/2659796

[13] Dave Curbow and Elizabeth Dykstra-Erickson. 1997. Designing the OpenDoc

Human Interface. In Proceedings of the 2nd Conference on Designing Interactive Sys-
tems: Processes, Practices, Methods, and Techniques (Amsterdam, The Netherlands)

(DIS ’97). ACM, NewYork, NY, USA, 83–95. https://doi.org/10.1145/263552.263581

[14] Charles C. Darwin. 1859. On the Origin of Species by Means of Natural Selection, or
the Preservation of Favoured Races in the Struggle for Life. JohnMurray., Albemarle

Street, London, England.

[15] Andrea A. diSessa. 1993. Toward an Epistemology of Physics. Cognition and In-
struction 10 (1993), 105–225. https://api.semanticscholar.org/CorpusID:120960205

[16] James R. Eagan, Michel Beaudouin-Lafon, and Wendy E. Mackay. 2011. Cracking

the Cocoa Nut: User Interface Programming at Runtime. In Proceedings of the
24th Annual ACM Symposium on User Interface Software and Technology (Santa

Barbara, California, USA) (UIST ’11). ACM, New York, NY, USA, 225–234. https:

//doi.org/10.1145/2047196.2047226

[17] Jérémie Garcia, Theophanis Tsandilas, Carlos Agon, and Wendy Mackay. 2012.

Interactive paper substrates to support musical creation. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Austin, Texas, USA)
(CHI ’12). ACM, New York, NY, USA, 1825–1828. https://doi.org/10.1145/2207676.

2208316

[18] William W. Gaver. 1991. Technology affordances. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (New Orleans, Louisiana,

USA) (CHI ’91). ACM, New York, NY, USA, 79–84. https://doi.org/10.1145/108844.

108856

[19] James J. Gibson. 1979. The ecological approach to visual perception. Houghton,
Mifflin and Company, Boston, Massachusetts.

[20] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA.

https://doi.org/10.1145/1276377.1276415
https://doi.org/10.1145/1276377.1276415
https://doi.org/10.1145/67449.67511
https://doi.org/10.1145/67449.67511
https://doi.org/10.1145/332040.332473
https://doi.org/10.1145/502348.502371
https://doi.org/10.1145/3125571.3125602
https://doi.org/10.1145/3125571.3125602
https://doi.org/10.1145/345513.345267
https://doi.org/10.1145/1095034.1095038
https://doi.org/10.1145/2380116.2380152
https://doi.org/10.1145/2380116.2380152
https://doi.org/10.1145/2984511.2984577
https://doi.org/10.1145/2659796
https://doi.org/10.1145/263552.263581
https://api.semanticscholar.org/CorpusID:120960205
https://doi.org/10.1145/2047196.2047226
https://doi.org/10.1145/2047196.2047226
https://doi.org/10.1145/2207676.2208316
https://doi.org/10.1145/2207676.2208316
https://doi.org/10.1145/108844.108856
https://doi.org/10.1145/108844.108856

Interaction Substrates:
Combining Power and Simplicity in Interactive Systems CHI ’25, April 26-May 1, 2025, Yokohama, Japan

[21] Viktor Gustafsson, Benjamin Holme, and Wendy E. Mackay. 2020. Narrative

Substrates: Reifying and Managing Emergent Narratives in Persistent Game

Worlds. In Proceedings of the 15th International Conference on the Foundations of
Digital Games (Bugibba, Malta) (FDG ’20). ACM, New York, NY, USA, Article 46,

12 pages. https://doi.org/10.1145/3402942.3403015

[22] Han L. Han, Miguel A. Renom, Wendy E. Mackay, and Michel Beaudouin-Lafon.

2020. Textlets: Supporting Constraints and Consistency in Text Documents. In

Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI ’20). ACM, New York, NY, USA, 1–13. https://doi.org/

10.1145/3313831.3376804

[23] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-

Directed Programming for SVG. In Proceedings of the 32nd Annual ACM Sympo-
sium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19).
ACM, New York, NY, USA, 281–292. https://doi.org/10.1145/3332165.3347925

[24] Kristina Höök and Jonas Löwgren. 2012. Strong Concepts: Intermediate-level

Knowledge in Interaction Design Research. ACM Trans. Comput.-Hum. Interact.
19, 3, Article 23 (Oct. 2012), 18 pages. https://doi.org/10.1145/2362364.2362371

[25] Daniel Ingalls, Tim Felgentreff, Robert Hirschfeld, Robert Krahn, Jens Lincke,

Marko Röder, Antero Taivalsaari, and Tommi Mikkonen. 2016. A World of Active

Objects for Work and Play: The First Ten Years of Lively. In Proceedings of the
2016 ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Amsterdam, Netherlands) (Onward! 2016). ACM,

New York, NY, USA, 238–249. https://doi.org/10.1145/2986012.2986029

[26] Robert J.K. Jacob, Audrey Girouard, Leanne M. Hirshfield, Michael S. Horn, Orit

Shaer, Erin Treacy Solovey, and Jamie Zigelbaum. 2008. Reality-based Interaction:

A Framework for post-WIMP Interfaces. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (Florence, Italy) (CHI ’08). ACM, New

York, NY, USA, 201–210. https://doi.org/10.1145/1357054.1357089

[27] Jennifer Jacobs, Sumit Gogia, Radomír Mundefinedch, and Joel R. Brandt. 2017.

Supporting Expressive Procedural Art Creation through Direct Manipulation. In

Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
(Denver, Colorado, USA) (CHI ’17). ACM, New York, NY, USA, 6330–6341. https:

//doi.org/10.1145/3025453.3025927

[28] Jeff Johnson and Austin Henderson. 2011. Conceptual Models: Core to Good Design.
Morgan & Claypool, San Rafael, California. https://books.google.fr/books?id=

SfMkFC8jHdwC

[29] Jeff Johnson, Teresa L. Roberts, William Verplank, David Canfield Smith,

Charles H. Irby, Marian Beard, and Kevin Mackey. 1989. The Xerox Star: A

Retrospective. Computer 22, 9 (1989), 11–26.
[30] Alan C. Kay. 1977. Microelectronics and the Personal Computer. Scientific

American 237, 3 (1977), 230–245. http://www.jstor.org/stable/24920330

[31] Alan C. Kay. 1984. Computer Software. Scientific American 3, 251 (1984), 52–59.

https://doi.org/10.2307/24920344

[32] Clemens N. Klokmose, James R. Eagan, Siemen Baader, Wendy Mackay, and

Michel Beaudouin-Lafon. 2015. Webstrates: Shareable Dynamic Media. In Pro-
ceedings of the 28th Annual ACM Symposium on User Interface Software and
Technology (Charlotte, NC, USA) (UIST ’15). ACM, New York, NY, USA, 280–290.

https://doi.org/10.1145/2807442.2807446

[33] Jingyi Li, Eric Rawn, Jacob Ritchie, Jasper Tran O’Leary, and Sean Follmer. 2023.

Beyond the Artifact: Power as a Lens for Creativity Support Tools. In Proceedings
of the 36th Annual ACM Symposium on User Interface Software and Technology (San
Francisco, CA, USA) (UIST ’23). ACM, New York, NY, USA, Article 47, 15 pages.

https://doi.org/10.1145/3586183.3606831

[34] Henry Lieberman, Fabio Paternò, and Volker Wulf (Eds.). 2006. End User Devel-
opment. Springer Netherlands. https://doi.org/10.1007/1-4020-5386-X_1

[35] Wendy Mackay. 2000. Responding to cognitive overload : Co-adaptation between

users and technology. Intellectica 30, 1 (2000), 177–193. https://doi.org/10.3406/

intel.2000.1597

[36] Wendy E. Mackay. 2002. Which interaction technique works when? floating

palettes, marking menus and toolglasses support different task strategies. In

Proceedings of the Working Conference on Advanced Visual Interfaces (Trento,
Italy) (AVI ’02). ACM, New York, NY, USA, 203–208. https://doi.org/10.1145/

1556262.1556294

[37] Wendy E. Mackay. 2023. DOIT: The Design of Interactive Things: CHI’23 Preview.
Inria, Paris, France. 88 pages.

[38] Wendy E. Mackay and Michel Beaudouin-Lafon. 2005. Generative Approaches

to Simplicity in Design. In International Forum: Less is More - Simple Computing
in an Age of Complexity. Microsoft Research, Cambridge, UK, 3 pages.

[39] Allan MacLean, Kathleen Carter, Lennart Lövstrand, and Thomas Moran. 1990.

User-tailorable Systems: Pressing the Issues with Buttons. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Seattle, Washington,

USA) (CHI ’90). ACM, New York, NY, USA, 175–182. https://doi.org/10.1145/

97243.97271

[40] Nolwenn Maudet, Ghita Jalal, Philip Tchernavskij, Michel Beaudouin-Lafon,

and Wendy E. Mackay. 2017. Beyond Grids: Interactive Graphical Substrates to

Structure Digital Layout. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). ACM, New York,

NY, USA, 5053–5064. https://doi.org/10.1145/3025453.3025718

[41] Joanna McGrenere and Gale Moore. 2000. Are we all in the same "bloat"?. In Pro-
ceedings of Graphics Interface 2000 (GI’2000). CHCCS/SCDHM, Montréal, Canada,

187–196. https://doi.org/10.20380/GI2000.25

[42] Gerrit Meixner, Fabio Paternò, and Jean Vanderdonckt. 2011. Past, Present, and

Future of Model-Based User Interface Development. i-com 10 (11 2011), 2–11.

https://doi.org/10.1524/icom.2011.0026

[43] Don Norman. 1998. The Design of Everyday Things. Doubleday, New York, NY,

USA.

[44] Dan R. Olsen, Jr., Scott E. Hudson, Thom Verratti, Jeremy M. Heiner, and Matt

Phelps. 1999. Implementing Interface Attachments Based on Surface Representa-

tions. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Pittsburgh, Pennsylvania, USA) (CHI ’99). ACM, New York, NY, USA,

191–198. https://doi.org/10.1145/302979.303038

[45] François Osiurak. 2014. What Neuropsychology Tells us About Human Tool

Use? The Four Constraints Theory (4CT): Mechanics, Space, Time, and Effort.

Neuropsychology Review 24, 2 (2014), 88–115. https://doi.org/10.1007/s11065-

014-9260-y

[46] François Osiurak, Christophe Jarry, and Didier Le Gall. 2010. Grasping the

affordances, understanding the reasoning. Toward a dialectical theory of human

tool use. Psychological Review 117, 2 (2010), 517–540. https://halshs.archives-

ouvertes.fr/halshs-00485348

[47] Roope Raisamo and Kari-Jouko Räihä. 1996. A New Direct Manipulation Tech-

nique for Aligning Objects in Drawing Programs. In Proceedings of the 9th
Annual ACM Symposium on User Interface Software and Technology (Seattle,

Washington, USA) (UIST ’96). ACM, New York, NY, USA, 157–164. https:

//doi.org/10.1145/237091.237113

[48] Miguel A. Renom, Baptiste Caramiaux, and Michel Beaudouin-Lafon. 2022. Ex-

ploring Technical Reasoning in Digital Tool Use. In Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems (New Orleans, LA,

USA) (CHI ’22). ACM, New York, NY, USA, Article 579, 17 pages. https:

//doi.org/10.1145/3491102.3501877

[49] Miguel A. Renom, Baptiste Caramiaux, and Michel Beaudouin-Lafon. 2023. In-

teraction Knowledge: Understanding the ‘Mechanics’ of Digital Tools. In Pro-
ceedings of the 2023 CHI Conference on Human Factors in Computing Systems
(Hamburg, Germany) (CHI ’23). ACM, New York, NY, USA, Article 403, 14 pages.

https://doi.org/10.1145/3544548.3581246

[50] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.

2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (jan 2017), 341–350. https://doi.org/

10.1109/TVCG.2016.2599030

[51] Ben Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming

Languages. Computer 16, 8 (Aug. 1983), 57–69. https://doi.org/10.1109/MC.1983.

1654471

[52] Randall B. Smith. 1987. Experiences with the Alternate Reality Kit: An Ex-

ample of the Tension Between Literalism and Magic. In Proceedings of the
SIGCHI/GI Conference on Human Factors in Computing Systems and Graphics
Interface (Toronto, Ontario, Canada) (CHI ’87). ACM, New York, NY, USA, 61–67.

https://doi.org/10.1145/29933.30861

[53] Sangho Suh, Bryan Min, Srishti Palani, and Haijun Xia. 2023. Sensecape: En-

abling Multilevel Exploration and Sensemaking with Large Language Models.

In Proceedings of the 36th Annual ACM Symposium on User Interface Software
and Technology (San Francisco, CA, USA) (UIST ’23). ACM, New York, NY, USA,

Article 1, 18 pages. https://doi.org/10.1145/3586183.3606756

[54] Ryo Suzuki, Jun Kato, Mark D. Gross, and Tom Yeh. 2018. Reactile: Programming

Swarm User Interfaces through Direct Physical Manipulation. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC,

Canada) (CHI ’18). ACM, New York, NY, USA, 1–13. https://doi.org/10.1145/

3173574.3173773

[55] Atau Tanaka. 2011. Sensor-basedmusical instruments and interactivemusic. Oxford
Academid, Oxford, UK, Chapter 12, 233–257. https://doi.org/10.1093/oxfordhb/

9780199792030.013.0012

[56] Theophanis Tsandilas. 2021. StructGraphics: Flexible Visualization Design

through Data-Agnostic and Reusable Graphical Structures. IEEE Transac-
tions on Visualization and Computer Graphics 27, 2 (2021), 315–325. https:

//doi.org/10.1109/TVCG.2020.3030476

[57] Brygg Ullmer, Hiroshi Ishii, and Robert J. K. Jacob. 2005. Token+Constraint

Systems for Tangible Interaction with Digital Information. ACM Trans. Computer-
Human Interaction 12, 1 (March 2005), 81–118. https://doi.org/10.1145/1057237.

1057242

[58] Haijun Xia, Bruno Araujo, Tovi Grossman, and Daniel Wigdor. 2016. Object-

Oriented Drawing. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (San Jose, California, USA) (CHI ’16). ACM, New York, NY,

USA, 4610–4621. https://doi.org/10.1145/2858036.2858075

[59] Haijun Xia, Ken Hinckley, Michel Pahud, Xiao Tu, and Bill Buxton. 2017. Writ-

Large: Ink Unleashed by Unified Scope, Action, & Zoom. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado,
USA) (CHI ’17). ACM, New York, NY, USA, 3227–3240. https://doi.org/10.1145/

3025453.3025664

https://doi.org/10.1145/3402942.3403015
https://doi.org/10.1145/3313831.3376804
https://doi.org/10.1145/3313831.3376804
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/2362364.2362371
https://doi.org/10.1145/2986012.2986029
https://doi.org/10.1145/1357054.1357089
https://doi.org/10.1145/3025453.3025927
https://doi.org/10.1145/3025453.3025927
https://books.google.fr/books?id=SfMkFC8jHdwC
https://books.google.fr/books?id=SfMkFC8jHdwC
http://www.jstor.org/stable/24920330
https://doi.org/10.2307/24920344
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/3586183.3606831
https://doi.org/10.1007/1-4020-5386-X_1
https://doi.org/10.3406/intel.2000.1597
https://doi.org/10.3406/intel.2000.1597
https://doi.org/10.1145/1556262.1556294
https://doi.org/10.1145/1556262.1556294
https://doi.org/10.1145/97243.97271
https://doi.org/10.1145/97243.97271
https://doi.org/10.1145/3025453.3025718
https://doi.org/10.20380/GI2000.25
https://doi.org/10.1524/icom.2011.0026
https://doi.org/10.1145/302979.303038
https://doi.org/10.1007/s11065-014-9260-y
https://doi.org/10.1007/s11065-014-9260-y
https://halshs.archives-ouvertes.fr/halshs-00485348
https://halshs.archives-ouvertes.fr/halshs-00485348
https://doi.org/10.1145/237091.237113
https://doi.org/10.1145/237091.237113
https://doi.org/10.1145/3491102.3501877
https://doi.org/10.1145/3491102.3501877
https://doi.org/10.1145/3544548.3581246
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1145/29933.30861
https://doi.org/10.1145/3586183.3606756
https://doi.org/10.1145/3173574.3173773
https://doi.org/10.1145/3173574.3173773
https://doi.org/10.1093/oxfordhb/9780199792030.013.0012
https://doi.org/10.1093/oxfordhb/9780199792030.013.0012
https://doi.org/10.1109/TVCG.2020.3030476
https://doi.org/10.1109/TVCG.2020.3030476
https://doi.org/10.1145/1057237.1057242
https://doi.org/10.1145/1057237.1057242
https://doi.org/10.1145/2858036.2858075
https://doi.org/10.1145/3025453.3025664
https://doi.org/10.1145/3025453.3025664

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Mackay & Beaudouin-Lafon

Appendix

The Interaction Museum (http://interaction.museum) offers a collection of both published interaction techniques from the research literature

as well as examples of proposed interaction designs from our students at the Université Paris-Saclay (Fig. 16).

Figure 16: The Interaction Museum website includes both low- and high-resolution video prototypes, as well as demos. This

example shows six high-resolution video prototypes that illustrate the principles of reification, polymorphism and reuse with

respect to instruments and substrates. (The currying and tweaking examples appear on a different page.)

http://interaction.museum

	Abstract
	1 Introduction
	2 Definitions
	2.1 Objects of Interest and Commands
	2.2 Power and Simplicity
	2.3 Substrates

	3 Related work
	3.1 Conceptual models
	3.2 Document-centric environments
	3.3 Power and simplicity in interactive systems
	3.4 Previous uses of the word ``substrate''

	4 Substrates
	4.1 Substrates structure the objects they contain
	4.2 Substrates manage constraints
	4.3 Substrates manage dependencies
	4.4 Substrates enable adjustments: tweaking
	4.5 Substrates enable specialization: templating
	4.6 Summary

	5 Assessing Substrates using Generative Theory
	5.1 Theory: Affordances, Technical Reasoning, Naive Physics and Co-adaptation
	5.2 Analysis and critique of existing systems
	5.3 (Re)-Constructing Google Slides

	6 Discussion
	6.1 Power and simplicity
	6.2 Limitations and directions for research

	7 Summary and Conclusion
	Acknowledgments
	References

