Instrumental Interaction:
A Step Beyond Direct Manipulation

Michel Beaudouin-Lafon and Wendy E. Mackay

Abstract Instrumental Interaction is a “generative theory of interaction” that moves
beyond the concept of Direct Manipulation in graphical user interfaces to create
simpler, yet more powerful forms of interactive systems. The concept of an instru-
ment is inspired by observation and theories of how people use physical tools to
manipulate objects in the real world. After summarizing the history and principles
of Direct Manipulation, we introduce the concept of an interactive digital instru-
ment and describe its four generative principles: Reification, Polymorphism, Reuse,
and Currying. We provide examples that show how designers can create effective
instrumental interfaces and discuss directions for future work.

Keywords: Direct manipulation, GUI, Instrument, Reification, Polymorphism,
Reuse, Currying, Affordance, Technical reasoning, Co-adaptation.

Michel Beaudouin-Lafon
Université Paris-Saclay, 91405 Orsay, France e-mail: michel.beaudouin-lafon @universite-paris-
saclay.fr

Wendy E. Mackay
Inria and Université Paris-Saclay, 91405 Orsay, France, e-mail: wendy.mackay @inria.fr

2 Michel Beaudouin-Lafon and Wendy E. Mackay

1 Introduction

Billions of people use Graphical User Interfaces, or GUIs, every day, on their smart-
phones, tablets, laptops, and desktop computers. Although GUIs can be traced back
to Ivan Sutherland’s (1963) seminal SKETCHPAD program in the early 1960’s, it took
more than a decade of research at Xerox PARC to develop the Arto and its suc-
cessors, which culminated in the first commercial graphical workstation, the Xerox
Star (Johnson et al., 1989). GUIs did not become widely popular until the 1980s,
with the arrival of the first PCs (Personal Computers).

Except for the lack of color and lower resolution, a screenshot from the original
XErox STAR (Fig. 1) shows the same "WIMP” interface, based on Windows, Icons,
Menus, and Pointing, seen on modern computers. Although the advent of tablets and
smartphones forced minor design changes to accommodate touch input and smaller
displays, the fundamental principles of GUIs remain unchanged.

Ben Shneiderman first articulated the principles of graphical user interfaces. He
coined the term Direct Manipulation to contrast with the then-dominant “command-
line interfaces” where users interact with objects indirectly by typing syntactically
correct command strings and referring to objects such as files by name. Direct Manip-
ulation offers an alternative: Users can point directly to the graphical representation
of the object of interest, such as an icon that represents a file, instead of remem-
bering and typing its name. Instead of using their memory to recall object names
and command syntax, users need only recognize the relevant objects of interest as
they interact with them directly. Some interactions inspired by metaphors from the
physical world are indeed very direct, e.g. when moving a window or dragging a file
icon to the trash icon. However, many other GUI interactions are actually indirect,

Ciose [oave eset Lenveseat [O 1

P I
B N
B S

T8 [30 [70
586 | 10| o0

1980 055+ Lotus data

1984 NAME ExTENSION SIZE
1930 (0MMAND COM 2677
1988 anst svs 2536
AssiGN com 64

TR exe 15091
BacKUP
cHKDSK

oD
ome
oEsUG

Hote i 2 sentence o 1-polnt text,
18-point text
24-point text.

36-point text.

Fig. 1 A screenshot of the original Xerox Star user interface (Needs permission)

Instrumental Interaction: A Step Beyond Direct Manipulation 3

because they require the user to access objects of interest indirectly, via menus,
dialog boxes, or other secondary interface elements.

Instrumental Interaction (Beaudouin-Lafon, 2000) was inspired by the observa-
tion that our interactions in the physical world are often mediated by fools rather
than performed with our bare hands, which lets us directly manipulate objects of
interest. We use pens to write, forks to eat, hammers to drive nails, etc. Human tool
use, and tool making, is an incredibly well-developed skill that has evolved over
millions of years (Harmand et al., 2015). The goal of Instrumental Interaction is,
therefore, to capitalize on these skills and transfer them to the digital world. More
generally, Instrumental Interaction seeks to provide both designers and researchers
with concepts and principles that enable them to create effective interactive systems
that are both powerful yet simple to use (Mackay and Beaudouin-Lafon, 2005).

The rest of this chapter examines the principles of Direct Manipulation and what
we mean when we say an interaction is “direct”. We then introduce the concept of
interactive digital instrument and describe the set of supporting theories relating
to human tool use that ground and motivate it. Next, we describe the generative
principles that enable designers to create instrumental interfaces and provide multiple
examples from commercial products and the research literature that illustrate the
benefits of an Instrumental Interaction approach. We conclude with a discussion and
directions for future work.

4 Michel Beaudouin-Lafon and Wendy E. Mackay

2 Direct Manipulation

Ben Shneiderman (1983, p.64)! introduced the following four principles of Direct
Manipulation:

* Continuous representation of the object of interest.

* Physical actions (movement and selection by mouse, joystick, touch screen, etc.)
or labeled button presses instead of complex syntax.

» Rapid, incremental, reversible operations whose impact on the object of interest
is immediately visible.

» Layered or spiral approach to learning that permits usage with minimal knowledge.

His article highlights the benefits of Direct Manipulation for novices, who “can
learn basic functionality quickly”; for experts, who “can work extremely rapidly
to carry out a wide range of tasks”; and for intermittent users, who “can retain
operational principles”. He also argues that Direct Manipulation reduces the need
for error messages since users can see their progress and change direction if needed.
They “experience less anxiety because the system is comprehensible and because
actions are so easily reversible” and they “gain confidence and mastery because they
initiate an action, feel in control, and can predict system responses” (Shneiderman,
1983, p.64-65).

Shneiderman also identifies several potential problems with Direct Manipulation,
all linked to the use of graphical representations. They may not always be appro-
priate; they may require learning to understand them; they may be misleading; and
choosing the right representation may not be easy. Other researchers have identified
other issues. For example, Sherugar and Budiu list disadvantages related to each
principle on the the popular Nielsen-Norman group website”: only a few objects can
be represented simultaneously, physical actions may induce repetitive strain injury
(RSI), lack of continuous feedback may lead to frustration, and rapid learning de-
pends greatly on the interface design. They also note that Direct Manipulation may
be slow, does not support repetitive tasks well, can be more error-prone than typing,
and can limit accessibility for users with visual and/or motor impairments.

To better understand the limits of Direct Manipulation, we next address its prin-
ciples, benefits and critiques, including the definition of “object of interest”, the
physical actions performed by the user and their effects, and how different categories
of users gain proficiency.

! Later books in the series (Shneiderman, 1997; Shneiderman et al., 2017) changed the first
principle to: “Continuous representation of the objects and actions of interest with meaningful
visual metaphors” and omitted the fourth principle. This chapter retains the original definition from
Shneiderman (1983).

2 https://www.nngroup.com/articles/direct-manipulation/

Instrumental Interaction: A Step Beyond Direct Manipulation 5

2.1 What is the object of interest?

The term “object of interest” appears twice in the four principles of Direct Manip-
ulation and several times in the original article (Shneiderman, 1983), yet it is never
defined in this nor in any other key publications, such as Hutchins et al. (1985) or
Shneiderman (1997). For the purpose of this chapter, we use the following definition:

The object of interest is the conceptual object that the user manipulates in order to achieve a
goal. Conceptual objects are visually represented in the interactive system and are relevant
to the current activity.

For example, when writing a report, the object of interest is the digital document
being edited; when looking for a file, the object of interest is the hierarchy of files and
directories; when searching for a product on an e-commerce website, the object of
interest is the product catalog. The object of interest changes over time according to
the user’s activity: it may shift to a different object, e.g. to a different document; from
an object to one of its parts, e.g. from the catalog to a given product; or conversely
from an object to its container, e.g. from a file directory to its parent. GUIs provide
visual representations of these objects of interest so that users can easily designate
them, typically through pointing.

GUIs also feature many visual objects that do not represent objects of interest.
Users may use interface objects — menus, buttons, toolbars, scrollbars, dialog boxes,
property sheets (or inspectors) — to directly manipulate objects of interest, but they
are not, in themselves, objects of interest in the above sense.

Note that an interactive application may feature objects that acquire the status
of an object of interest. For example, word processors typically feature styles that
group together sets of attributes, such as font, color and margins. Applying a style to a
paragraph is not only easier than changing each attribute individually, but also ensures
consistency across paragraphs within the document. Styles make the interface both
simpler — the user may apply a style without knowing the details of its attributes
— and more powerful — changing a style attribute affects all paragraphs using that
style. Understanding styles is thus a key characteristic of being a proficient word
processor user. We refer to styles as secondary objects of interest: they complement
the primary object of interest, the document in this case, but are also new conceptual
objects that users integrate into theirmental model of word processing.

2.2 Direct, or indirect manipulation?

The principles of Direct Manipulation state that objects of interest should be manipu-
lated through physical actions. In cursor-based interfaces, the user points directly at a
representation of the object, followed by a click or a drag®. A click has an immediate
effect on the object, whereas a drag either combines two objects, e.g., dragging an

3 Curiously, Shneiderman’s second principle mentions pressing buttons, which seems inconsistent
with the spirit of Direct Manipulation.

6 Michel Beaudouin-Lafon and Wendy E. Mackay

object to the trash icon, or controls a continuous change in an attribute of the object,
e.g., increasing the object’s size.

However, in practice, very few Direct Manipulation interfaces involve acting
directly on the object of interest. For example, consider how to change a text block’s
font size with a standard graphical editor. A typical interface (Fig. 2a) requires the
user to first “select” the object of interest by clicking on it. Next, the user searches
for the desired command, usually represented as a menu item located in the “tool
bar”, and selects it. This command opens a dialog box. The user must now find
the appropriate text box, type the desired font size, and finally click on the OK
button, at which point the text changes to the specified size. Only the first action
in this interaction sequence is “direct” — all others involve interaction objects that
are not the object of interest. This violates both the second principle of Direct
Manipulation, since users must “master a complex syntax” and the third principle,
since the operations are neither incremental nor reversable and “whose impact on
the object of interest” is not immediately visible.

An alternative interface (Fig. 2b) might feature an inspector*. Here, the user first
selects the object, which in turn displays an inspector showing the object’s properties.
The font size is represented by a slider, which, when moved, immediately adjusts the
target object’s size. Although closer to satisfying the second and third principles, this
interaction is still not direct. One could argue that the inspector acts as an alternative
representation of the object of interest, but this is inconsistent with the first principle
of Direct Manipulation since the representation is not continuous: it shifts to another
object as soon as the user selects a different target.

The most direct form of interaction for this example (Fig. 2c¢) would be to click
on the object to display its corner handles, and then drag a handle to increase the
font size. However, even in this case, one could argue that the user does not directly
manipulate the object itself, but rather the object’s handles. Moreover, it is difficult
to imagine a similar direct interaction that would let the user change the object’s
color instead of its size.

2] [i
1 \ Hello: <€— Size 24
|] [] I:l:l
< >
. size o

Hello [| [[]]

. utelio, Hello
3 Y = =

Fig. 2 Three versions of “direct” manipulation: (a) menu and dialog box; (b) inspector or property
sheet; (c) resize handles

2. 6

4 Also called “property box™, inspired by the Xerox Star’s “property sheet”.

Instrumental Interaction: A Step Beyond Direct Manipulation 7

The goal of this example is to show that the “direct manipulation” of current GUIs
is actually very indirect: users must shift attention from their object of interest to
external interface objects, which violates the principles of Direct Manipulation.

2.3 Object-verb vs. verb-object syntax

Each of the above interactions begins with the user selecting an object of interest
by pointing at it directly. This object-verb syntax is a very common in GUISs: first
identify the object of interest, then specify which command to apply, typically by
selecting it from a menu, and finally specify the command’s parameters, if any. This
approach is particularly effective if the user wants to apply multiple commands to
the same object, since the object typically stays selected after a command has been
applied to it.

However, many GUIs also feature the opposite verb-object syntax, usually in the
form of a tool palette that contains a set of icons. Clicking an icon activates the
corresponding tool, which the user can then apply to one or more objects of interest.
Here, the command is specified first, then the object. The command parameters are
either part of the tool itself, in which case they can typically be changed via an
inspector, and/or are specified when applying the tool, such as when defining the
size of an object being created with a drag interaction. This approach is particularly
effective when the user wants to apply the same command to multiple objects, in
sequence. It is also useful when creating a new object of interest, since one cannot
use the object-verb syntax if the object does not yet exist.

A 2PEA = = ==]t=[8 KA = = ==]=&] E
upda No Colour ose Check for Update ites, fixes and improvements, choose Check for Updates.
4 5 6 7 0 1] i 3 4 5 6
20 [| e e
Ins Lﬁﬂu... a “generative Instrumental Interaction is a “generative
the e moves beyond theory of interaction” that moves beyond
the anipulation in the concept of Direct Manipulation in
gre,_ _______________ create simpler, graphical user interfaces to create simpler,
yet more powerful forms of interactive yet more powerful forms of interactive
systems. The concept of an instrument is systems. [Thelconcept of ‘an instrument is <
inspired by observation and theories of how inspired by observation and theories of how
people use physical tools to manipulate people use physical tools to manipulate
objects in the real world. objects in the real world.

Fig. 3 The highlighter tool in Microsoft Word uses the object-verb syntax (left) when text is
selected and the verb-object syntax when no text is selected (right).

In some (rare) cases, both syntaxes coexist for the same command and even
through the same interface object. For example, in Microsoft Word, the highlighter
toolbar button follows the object-verb syntax when there is currently selected texti.e.
it highlights that text when clicked (Fig. 3a), and the verb-object syntax when only

8 Michel Beaudouin-Lafon and Wendy E. Mackay

the insertion cursor appears, with no text selected. Here, the highlighter becomes a
brush that “paints” a highlight as the user clicks and drags over the text (Fig. 3b).

Featuring both verb-object and object-verb syntax in the same user interface may
confuse users. Even so, as mentioned above and demonstrated by Mackay (2002),
each syntax can have advantages, depending on the task at hand. The object-verb
syntax is more efficient for object-centric tasks, whereas the verb-object syntax is
more efficient for command-centric ones. Unfortunately Direct Manipulation does
not provide a solution for addressing this conflict.

2.4 Power vs. simplicity

One goal of Direct Manipulation is to support simplicity of interaction, with a cor-
respondingly layered approach to learning the interface. One way to understand this
principle is that “simple things should be simple, complex things should be possi-
ble.”> Many simple things are indeed simple in GUISs, due to the “point-and-click”
nature of basic interactions and the standardization of various common commands
such as open/close, scroll, resize, and copy-paste. Yet many common commands
that should be simple are difficult to discover or hard to use, including managing
styles in word processors, aligning objects in graphics tools and specifying search
criteria on e-commerce websites. For example, some CAD systems feature hundreds
of commands and some business applications include dozens of screens with hun-
dreds of forms. Direct Manipulation interfaces have difficulty scaling to this level of
complexity.

A second goal should be to support power of expression to help users perform
complex tasks. Early critiques of Direct Manipulation highlighted the lack of support
for repetitive tasks and the user’s inability to create their own commands. Unlike
language-based command-line interfaces such as the Unix shell, where users can
use pipes and create scripts that combine existing commands, Direct Manipulation
interfaces lack the ability to abstract over objects and commands. Several Direct
Manipulation interfaces address this limitation by letting users create scripts, e.g.
Automator® or Shortcuts’ on MacOS. However, Direct Manipulation applications
need simpler mechanisms for personalizing or creating new commands.

2.5 Summary

Although Direct Manipulation is the dominant interaction style on personal comput-
ers, it has a number of its limitations — not so much with its principles, but rather

3 Quote attributed to Alan Kay.
6 https://support.apple.com/en-gb/guide/automator
7 https://support.apple.com/en-gb/guide/shortcuts-mac

Instrumental Interaction: A Step Beyond Direct Manipulation 9

in how they have been interpreted and implemented over the years. In order to move
beyond these limitations, we summarize our critique by asking how can we:

extend the concept of the “object of interest”?

expand Direct Manipulation to embrace indirect interaction?

define a richer syntax of interaction?

scale Direct Manipulation to larger numbers of objects and commands?
increase the power of Direct Manipulation interfaces?

10 Michel Beaudouin-Lafon and Wendy E. Mackay

3 Instrumental Interaction

The analysis of Direct Manipulation in the previous section shows that, while the
principles spelled out by Shneiderman (1983) are sound, they are not followed by
the vast majority of today’s GUIs. One reason is that the large number of possible
commands available for any non-trivial object of interest simply cannot be made
available through direct interaction with that object, i.e. by just pointing at it. Rather
than trying to achieve directness, we should instead embrace the fact that interaction
is often indirect and make this indirection explicit.

Instrumental Interaction (Beaudouin-Lafon, 2000) is an interaction model based
on the observation that our interactions in the physical world are often mediated
by tools and are rarely direct, i.e. with just our bare hands. For example, while we
might use our fingers to write in the sand, we more often write text with tools such
as pens or keyboards. Instrumental Interaction transfers this concept of mediated
interaction into the digital world and gives the mediators, called instruments, the
status of first-class objects in the interface. Unlike menu commands, which use
verbs to describe their actions, instruments transform the interface’s capabilities for
action into objects that can be manipulated by the user through direct action. Before
describing instruments in greater detail, we review supporting theories of human
tool use to help understand the power of tools.

3.1 Theoretical foundations

Humans are unique in their ability to actively create and use tools. Human tool use
can be traced back at least 3.3 million years (Harmand et al., 2015), and involves a
set of cognitive processes studied by psychologists. The theories of affordances and
technical reasoning are especially valuable for helping us to understand how tools
help humans expand their capabilities for action.

James Gibson (1979) defines affordances as properties of an object that enable
specific actions by animals and humans. He observes that: “When in use, a tool is
a sort of extension of the hand, almost an attachment to it or a part of the user’s
own body, and thus is no longer a part of the environment of the user.” (Gibson,
1979, p.40). Understanding the capabilities of the environment requires perceiving
these affordances, which we learn through a process that Eleanor Gibson (1969)
calls perceptual learning. Subsequent research has shown that holding a tool makes
it an extension of our body schema (Klatzky et al., 2008). Holding a tool therefore
redefines the affordances of the environment for the person holding it, letting her
perceive new capabilities for action. For example, holding a pen reveals the surfaces
upon which the pen may work.

Conversely, looking for a way to draw on a surface reveals the mark-making
capabilities not only of a pencil, but also of a charred piece of wood. In other words,
we are experts at figuring out which object or combination of objects could be
used as a tool for a particular purpose. On the one hand, we use our knowledge of

Instrumental Interaction: A Step Beyond Direct Manipulation 11

the purposes of a tool to use it in appropriate circumstances, e.g. fetching a pencil
for writing. This procedural knowledge is acquired through repetition and does not
require understanding the underlying mechanisms at play. On the other hand, we use
technical reasoning (Osiurak, 2014), a specific type of reasoning where we use our
knowledge of abstract technical laws and the perceived properties of an object to use
it as a tool. For example, we know that a sharp object can pierce a softer one, and
we can apply this knowledge to use a pencil to poke a hole in a sheet of paper.

Recent work has shown evidence that technical reasoning is indeed at play when
interacting with digital content (Renom et al., 2022, 2023), involving what the authors
call interaction knowledge, i.e. knowledge of the “laws” of digital content and GUIs.
We also have extensive procedural knowledge of how to use GUIs, acquired through
repeated use. This provides a strong basis for using tool-mediated interaction in
GUISs. It also suggests going beyond the simple tools used in some interfaces, such
as the brush in a painting program, to support more powerful tools that can be
appropriated by users (Mackay, 2000), to provide tools that can manipulate other
tools, and to let users create their own tools.

3.2 What is an instrument?

The key characteristic of an instrument is to mediate interaction with the object of
interest: the user interacts with the instrument, and the instrument interacts with the
object of interest (Figure 4). More precisely, the instrument receives input actions
from the user, such as moving the mouse, clicking, or entering text. These actions
may produce reactions from the instrument, such as changing the cursor or providing
haptic feedback. The instrument transforms the user actions into commands sent to
the target object. These commands generate a response, such as a visible change of
state of one or more objects of interest, the creation or deletion of an object of interest,
or a side effect, e.g., printing a document. The response may also be interpreted by
the instrument and conveyed back to the user. For example, the instrument may
continuously update the display showing the object’s current size as the user moves
the cursor.

Action Instrument Command

Object

Reactlon

Response

Fig. 4 Mediated interaction through an instrument.

12 Michel Beaudouin-Lafon and Wendy E. Mackay

Consider a scrollbar — a navigation instrument designed to access the parts of a
document that are not currently visible. When the user clicks on one of the scrollbar’s
arrows or drags its “thumb”, the scrollbar sends the document a scrolling command,
and the document responds by updating its view. The scrollbar reacts to the user’s
actions by highlighting either the arrow or the thumb. The scrollbar also responds to
the scrolling commands by updating the thumb’s position to reflect the new view.

Now consider an instrument for creating oval shapes in a graphics editor. The
user first clicks the instrument to “grab” it. When the user then presses the mouse
button, the instrument sends a creation command to the canvas which creates a small
oval. As the user drags the mouse, the instrument sends resize commands to the
oval; in response, the oval changes size and the instrument displays the current size.
Alternatively, the oval may be created only when the user releases the mouse button.
In this case, it is the instrument that displays the oval shape in reaction to the user
moving the mouse to adjust the size; the creation command is sent only at the end.

A third, less common example, is a color-changing tool with multiple controls,
such as a collection of color swatches, RGB or HSV color sliders, and/or a color
wheel. The user selects a target object by clicking on it and then operates the relevant
controls to modify its color. The rest of this section describes and illustrates two
taxonomies of instruments and a set of instrument properties to better characterize
the design space of Instrumental Interaction.

3.2.1 Modes of operation

The examples above illustrate the three primary modes of operation for an instrument:

* In-hand: the instrument must first be “grabbed” by the user who can then apply
it to one or more objects. For example, the oval-creation tool described above
or a drawing tool’s paint brush must be grabbed before use. These instruments
typically live in tool palettes and are represented by icons. Selecting an icon grabs
the instrument, ideally changing the mouse cursor to the instrument’s icon in order
to convey the fact that future actions will be interpreted by the instrument.

* Attached (also called Embedded): the instrument is bound to an object of interest
obviating the need to specify that object when using the instrument. To make
the connection explicit, the instrument is displayed within or next to the object
of interest. For example, both the afore-mentioned scrollbar and the window’s
“close” button are bound to that window: a single click or drag applies the
instrument to the window. Handles for transforming geometric shapes are also
embedded instruments.

* Remote: the instrument operates on an object that must be specified separately
and that can be visually distant from the instrument. For example, the color tool
described above and, more generally, current GUI property inspectors that operate
on selected object(s) are all remote instruments.

The main difference among these three modes of operation is how the object of
interest is specified. This raises the possibility of changing an instrument’s mode

Instrumental Interaction: A Step Beyond Direct Manipulation 13

of operation. For example, turning the attached close-window instrument into an
in-hand instrument creates a closing tool that can first be grabbed, then applied to
several windows by clicking anywhere inside them. Conversely, attaching a color
instrument to a target object would bind it to that object, e.g. as a small icon displayed
next to the object, similar to the handles that transform graphical shapes. Clicking
that icon reveals the control panel and lets the user change the color. Different color
panels could then be displayed simultaneously, making it easy to copy-paste colors
between color panels. Alternatively, pressing the mouse button on the icon and
dragging the mouse could control two components of the color property, such as the
saturation and value, and the scroll wheel could control the hue. Another example
could deattach the scrollbar from one document, turning it into a remote instrument
that affects multiple documents, enabling synchronized scrolling across them.

3.2.2 Types of instruments

We present the following taxonomy of instruments derived from typical GUI com-
mands organized according to their effects on the user’s objects of interest. Although
not meant to be exhaustive, this taxonomy covers the majority of commands used in
today’s GUIs. Instruments can:

e create new objects.

* delete existing objects.

* change properties of objects.

e annotate objects.

* organize and combine objects.

* manage constraints among objects.
* navigate among objects.

Creating a new object typically requires specifying its initial properties and
relationships to other objects, either when the tool is applied, e.g., when dragging
a bounding box to specify the size of a graphical shape, or when copying it from a
default or current set of properties, which may then be modified through an inspector.
A more instrumental approach would embed these properties into the tool itself: The
instrument would set the object’s properties after it is created (see below) or set
the creation tool’s properties for later use. Combined with the ability to duplicate
existing tools, users can now create their own palettes of cloneable template objects.

Deleting objects may take advantage of the move instrument to drag objects to
a trash icon. An alternative “vacuum cleaner” instrument might directly delete the
objects it hovers over. Both approaches feature a temporary holding object — the
trash or the vacuum cleaner — that preserves the deleted objects for later inspection
and retrieval, if necessary.

Changing object properties is probably the most frequent activity in most GUISs,
especially in content-creation applications. Handles are attached instruments that
users can drag to control geometric properties such as position, size or rotation.

14 Michel Beaudouin-Lafon and Wendy E. Mackay

Handles can also affect non-geometric properties, e.g. using a drag action to con-
trol one or more parameters, such as opacity or contrast/brightness. Alternatively,
an instrument can be attached to an inspector window that includes controls for
modifying the object’s properties. Instead of providing a single inspector window
associated with the currently selected object, a more instrumental approach would let
the user manage multiple inspectors, each attached to an object or a group of objects.
The object could include a handle (attached instrument) that opens the inspector
or an in-hand instrument that opens a new inspector when applied to an object of
interest. In-hand instruments would let users select multiple objects, e.g. by circling
them. In this case, the inspector would display multiple values for each property, as
in ManySpector (Hoarau and Conversy, 2012). Supporting multiple simultaneous
inspectors lets users copy and paste values from one inspector to another, e.g. with
a simple drag-and-drop action.

Annotating objects lets users communicate information to other users and/or
document decisions or design rationale. Users should be able to attach comments,
tags and other metadata to any object. Tags and other metadata can help users re-
find objects when used together with the navigation instruments described below.
Annotation instruments should let users define the annotation’s scope — document,
object of interest, set of objects or part of an object, e.g. a text selection — and then
the annotation’s content. Annotations should be treated as first-class objects that can
be manipulated in the same way as other objects. This lets them become secondary
objects of interest when, for example, the user wants to annotate an annotation. Users
should also be able to modify the scope of an annotation, rather than deleting and
recreating it.

Organizing and combining objects occurs in applications that deal with large
numbers of objects or very complex objects. In these cases, objects are often orga-
nized into a hierarchy that can be viewed as a list or a tree. Instruments for managing
such lists are often embedded in the list, such as the triangles for opening and closing
a level in the hierarchy or handles for reordering the list’s content. In-hand instru-
ments can also be useful for creating groups and adding or removing objects from
them, especially when objects appear as a collection on a canvas, such as icons in a
file manager or shapes in a graphics editor. Users typically create groups by selecting
a set of objects and then invoking the “group” command. However, this becomes
cumbersome and error-prone when the user has to ungroup, re-select and re-group
just to add or remove an object. A grouping instrument would let users directly add
or remove objects from a group, e.g. through a drag operation.

Managing constraints among objects involves setting relationships that are main-
tained as the corresponding objects change. For example, a spreadsheet formula
establishes a relationship between a set of source cells and cell’s value, which is
updated when the source cells involved in the formula change. We can consider the
spreadsheet’s formula editor as an instrument for editing formulas, where users can
select source cells by name or through direct selection. The formula editor highlights
the relevant source cells, which the user can then modify simply by dragging one end
of the highlighted range. More generally, creating and editing a constraint involves
dealing with multiple objects, which can lead to potentially complex interactions.

Instrumental Interaction: A Step Beyond Direct Manipulation 15

Representing constraints as first-class, interactive objects, or creating instruments
designed for manipulating constraints, produces simpler yet more powerful interac-
tions. For example, the StickyLinNEs alignment instrument (section 5.5) makes it
easy to align and distribute graphical objects. Not only is the alignment and distri-
bution maintained when individual objects are added, removed or dragged, but users
can also tweak the alignment and distribution parameters to produce a desired result.

Navigation helps users access objects that are not currently visible, often via
attached instruments such as scrollbars, pan-and-zoom controls and links. Users can
also type keywords into a search instrument. By extension, navigation also includes
filtering the objects to be viewed, e.g. when querying an e-commerce website.
Filtering is often achieved by asking the user to fill out a form and then sending the
query, with few possibilities to refine the query after the fact, short of re-submitting
it. An instrumental approach replaces the form with a set of instruments or an
inspector that specify the value or range of interest, letting the user adjust the filters
interactively, as with Dynamic Queries (Shneiderman et al., 1992). Filtering can also
use the tags managed with the annotation tools described above.

Note that since instruments are objects, the above instruments can also be applied
to other instruments. Users should be able to create, delete, organize and configure
instruments with the same or similar instruments that they use to manipulate primary
objects of interest. Treating instruments as secondary objects of interest will in turn
allow users to perform technical reasoning with them.

3.2.3 Properties of instruments

Beaudouin-Lafon (2000) introduces the following set of properties to characterize
instruments, based on their mode of operation and the mapping between the user’s
actions and their effect on the object of interest:

¢ Degree of indirection;
* Degree of integration;
* Degree of compatibility;

These properties can be used to compare instruments and to explore the design space
by looking for instruments that achieve the same effect but have a different degree
of indirection, integration and/or compatibility.

The degree of indirection measures the spatial and temporal offsets of an instru-
ment. The spatial offset is the distance on the screen between the instrument and the
object it controls. In-hand instruments have a zero spatial offset as they act directly
on the object of interest. Embedded instruments such as handles have a small spatial
offset, while remote instruments have an arbitrarily large one. Note that a large spatial
offset is not necessarily undesirable. Just as locating a light switch next to the door
is more convenient than placing it directly on a ceiling light, it often makes sense to
place instruments in a well-known, easily accessible location on screen, especially
if they act on multiple objects simultaneously.

16 Michel Beaudouin-Lafon and Wendy E. Mackay

The temporal offset is the time difference between physical actions to the instru-
ment and the object’s response. Following the third principle of Direct Manipulation,
a short temporal offset helps create a sense of causality. This is why indirect manip-
ulation through, e.g., dialog boxes, should be avoided. If a large temporal offset is
necessary, e.g. for performance reasons, a proxy representation of the effect of the
command should show the instrument’s reaction. For example, if an object cannot be
resized at interactive rates, a rubber-band shape should provide feedback to the user.
Another example involves drag-and-drop operations that only perform the action
at drop time, resulting in potentially large temporal offsets. Here, the instrument’s
reaction should provide feedforward, that is, show what will happen if the user drops
the object.

The degree of integration measures the proportion of the input device’s number
of degrees of freedom (DoF) that are actually used by the instrument. We note this
as: di = x — y where x is the DoF of the input device and y the DoF used by the
instruments. A mouse provides two degrees of freedom, which are both used when,
e.g., resizing an object (di = 2 — 2). A scrollbar, on the other hand, only uses one
dimension and therefore has a lower degree of integration (di =2 — 1).

This leaves room for more powerful instruments such as Orthozoom (Appert
and Fekete, 2006), which controls both scrolling and zooming (di = 2 — 2).
Bi-manual input, multi-touch input, and pen-based input (which captures pressure
and pen orientation) provide more degrees of freedom and therefore enable richer
instruments. For example, the pinch-to-zoom gesture (4 DoF) on a touch surface
controls translation (2 DoF), rotation (3 DoF for center and angle) and scaling (1
DoF) with the movements of two fingers (di = 4 — 6). With a single mouse, this
requires either multiple instruments, or using modifier keys to switch mode within
an instrument. Note however that a single mouse (2 DoF) can be used to control both
translation and rotation (Beaudouin-Lafon, 2001; Kruger et al., 2005) (di =2 — 5).
These examples show that some techniques let users control more degrees of freedom
than those of the input device, albeit with some limitations such as longer or less
intuitive interactions.

The degree of compatibility measures the similarity between the user’s actions
and the object’s response. Resizing an object by dragging a corner handle has a high
degree of compatibility since the object follows the movements of the cursor. By
contrast, scrolling with a scrollbar has a low degree of compatibility because mov-
ing the thumb downwards moves the document upwards. Many music applications
operate rotary knobs with a left-right or up-down dragging motion, which has a low
degree of compatibility. Some word processors ask users to enter a number in a text
field to specify a margin, which has a lower degree of compatibility than dragging
a tab in a ruler. Note however that performing linear movements with the mouse
is easier and more precise than circular movements (Nancel et al., 2011) and that
entering a number may be more accurate if the user must specify an exact value.

Note that none of these properties suggest optimal values — higher or lower is
not necessarily better. Instead, the best alternative is subject to a depends on set
of trade-offs. Sometimes, it may be better to offer users multiple instruments that

Instrumental Interaction: A Step Beyond Direct Manipulation 17

accomplish the same task. They can then pick the one they prefer, either because it is
more suitable or efficient for the task at hand, or simply because it is more familiar.

3.3 Summary

Instruments are objects that can be manipulated by the user to affect other objects,
leading to a mediated form of interaction that builds on our skills in the physical
world. The examples in this section are all drawn from current GUIs, showing
that in many cases the indirect interactions identified in the previous section can
be interpreted as mediated by instruments. However, Instrumental Interaction lets
designers reinterpret these interactions, leading to simpler yet more powerful designs.

These particular examples show the power of separating instruments from the
objects they operate on. Pushing this idea further, one could imagine that tools are not
trapped inside applications as they are today. For example, many current applications
feature one or more commands for assigning colors to objects. Users must constantly
adapt to each and cannot easily copy colors across applications. With an instrumental
approach, there is no reason why the color instrument described earlier could not be
used in any application, configured to control multiple target objects from different
applications, e.g. to ensure that a text document’s color matches that of a diagram.

Furthermore, users should be able to exert technical reasoning and use instruments
in unanticipated ways. For example, many objects feature colors that cannot be
changed by the user, such as the background color of a document or window. Ideally,
a color instrument should be able to change these colors as well. In other words,
the ability of an instrument to manipulate an object should be determined by the
properties of the object and the corresponding capabilities of the instrument. In the
same way that a pencil can write on different types of surfaces, even those it was
not necessarily designed for, such as a wall, a digital pen should work with different
types of content.

While designing new instruments can be inspired by similar parallels with the
physical world, Beaudouin-Lafon and Mackay (2000) have developed a principled
approach that was later extended into the concept of generative theory of inter-
action (Beaudouin-Lafon et al., 2021). The next section describes the generative
principles of Instrumental Interaction.

18 Michel Beaudouin-Lafon and Wendy E. Mackay

4 Generative Principles for Instrumental Interaction

Beaudouin-Lafon et al. (2021) describe generative theories of interaction as theo-
ries that “draw insights from empirical theories about human behavior in order to
define specific concepts and actionable principles, which in turn serve as guidelines
for analyzing, critiquing and constructing new technological artifacts.” The article
describes Instrumental Interaction as such a theory, based on the theories of human
tool use outlined in the previous section. The new concept is the instrument, and
the three principles are Reification, Polymorphism and Reuse, which were first in-
troduced by Beaudouin-Lafon and Mackay (2000)%. We also add a new principle,
Currying, which is briefly mentioned by Beaudouin-Lafon (2004).

4.1 Reification

Reification is the process by which an abstract concept is turned into a concrete
object. In Instrumental Interaction, the concepts are the commands and the concrete
objects are instruments. In other words, an instrument reifies an abstract command,
i.e. itembodies a command into an object that the user can interact with to manipulate
another object, called the target object. For example, a scrollbar reifies the action
of navigating a document into an object that the user interacts with to act on the
document.

Reification is the fundamental generative principle for creating new instruments:
when confronted with the problem of providing a given functionality, designers can
imagine an instrument that reifies it, in order to make it concrete for the user. This
contrasts with the traditional approach where a new functionality is typically bound
to a new menu item that acts as a “magic word” to invoke the functionality, resulting
in users having to learn which command does what and when it is available.

A properly designed instrument leverages technical reasoning: the instrument
should have a technical effect that makes it more understandable and memorable
than the mere arbitrary mapping between a menu entry and a command. However,
Reification alone does not guarantee success. Applying the principle requires skill,
creativity, and an iterative process to refine the design and test it with users.

4.1.1 Polymorphism
In computing, polymorphism is the capability of a function to work with parameters

of different types. In Instrumental Interaction, Polymorphism is the principle that
helps create instruments that can be applied to objects of different types.

8 This section borrows and adapts the descriptions of these principles from both Beaudouin-Lafon
and Mackay (2000) and Beaudouin-Lafon et al. (2021).

Instrumental Interaction: A Step Beyond Direct Manipulation 19

Most current interfaces feature polymorphic commands such as open, cut, copy,
paste, save or delete, which can work with, e.g., documents, text, images, or sound.
These commands could easily be turned into polymorphic instruments. Instrumental
Interaction encourages Polymorphism in order to enable technical reasoning: the
more object types an instrument can work with, the more likely it can be used in
powerful and/or unexpected ways. For example, a coloring instrument should work
with different types of objects, and even different parts of an object such as its
border, background or text, thereby replacing the various color commands of current
systems. The same coloring instrument could also be applied to another instrument,
such as a brush or paint bucket, thereby defining the color it applies to other objects.
Check where else we used this example to avoid redundancies.

Polymorphism enables powerful interactions with groups of objects. An instru-
ment designed to be applied to a single object, such as the color instrument, can be
applied to a group of objects. In this case, it is applied to each object that understands
the instrument. If the instrument is polymorphic, it will apply to a wider set of object
types, and therefore can be used with heterogeneous groups.

Polymorphism complements Reification: Reification results in the creation of
new instruments whereas Polymorphism helps reduce the number of instruments by
“factoring” them. Reducing the number of instruments is important if we want to
keep the interface simple while increasing its power.

As in programming languages, Polymorphism can be used for better or for worse.
To be successful, a polymorphic instrument must have some internal consistency
that makes its behavior with different types of objects predictable. This leverages
technical reasoning rather than require procedural learning of different commands.
For example, it is easier to infer that the color instrument can change the background
color of a document rather than learn and remember that it can only be changed by
going to the document settings. Check with the other place where we mention this.

4.1.2 Reuse

Reuse is the ability for users to reuse previous actions (Input Reuse) or the results
of these actions (Output Reuse). Input Reuse supports repetitive tasks, while Output
Reuse supports the common practice of starting from existing content and modifying
it rather than starting from scratch.

Output Reuse is already present in many interfaces through, e.g., the copy-paste
and duplicate commands. Reification augments the power of Output Reuse by cre-
ating new objects (the instruments) that can be reused. For example, the ability to
duplicate and then modify instruments lets users create multiple variants, such as
brushes with different patterns.

Similarly, Input Reuse is often present in the form of a redo command, and
sometimes through the ability to access and selectively re-execute past actions listed
in a history panel. Polymorphism augments the power of Input Reuse by letting users
apply the same instrument to objects of different types.

20 Michel Beaudouin-Lafon and Wendy E. Mackay

4.2 Currying

Building on the parallel with functional programming, using an instrument can be
considered as the application of a function that takes as parameters one or more
objects of interest and other values, such as the color to be applied by a color
tool, or the position and size of a shape being created. In functional programming,
currying, also called partial application, transforms a function f of n parameters
f(x1,x2,...x,) and a value v into a function f” of n — 1 parameters by fixing the
first parameter of f to v: f'(x2,...x,) = f(v,x2,...x;). A generalizing of currying
consists of defining a new function where any number of parameters of the original
function are fixed to given values.

Currying an instrument consists of creating a new instrument where one or more
parameters of the original instrument are fixed. For example, an instrument that sets
a color takes as parameters the target object that will receive the color and the value
of the color. Currying the target object parameter creates an attached instrument that
is bound to that object. Currying the color instead creates an instrument that assigns
that color to any object it is applied to. The value of currying lies in letting users
decide what parameters they want to fix, thereby customizing their environment. For
example, a user can create a set of color instruments for each color of the palette
they want to work with, as when an artist picks a set of color pens.

4.3 Power in combination

As shown in the above examples, each of these principles are useful for both analyzing
existing interfaces and creating new designs. However, it is their combination that
makes them even more powerful.

* Reffication and Polymorphism: GUIs typically features hundreds of commands,
therefore reifying commands can lead to a large number of instruments. Polymor-
phism helps reduce this complexity by merging multiple instruments with similar
functionality into a single one. For example, the same color instrument can be
used to change the border, fill and text color of an object simply by applying it to
different parts of the object.

* Polymorphism and Input Reuse: Polymorphism expands the types of objects that
can be targeted by a given instrument. This facilitates input reuse, since the same
action can be applied to objects of different types, as well as to groups of such
objects. For example, a resize instrument can be applied to a group of different
shapes.

* Reification and Output Reuse: Reification creates new objects, not just new instru-
ments. These new objects, which typically become secondary objects of interest,
can then be reused through, e.g., copy-paste. For example, the concept of a collec-
tion of attributes can be turned into an object called a style, represented as such
in the interface. A style can then be copied to create a new style and modify it.

Instrumental Interaction: A Step Beyond Direct Manipulation 21

Output Reuse and Currying: When applied to instruments, output reuse enables
duplicating existing instruments, which can then be specialized through curry-
ing. For example, the user may create several copies of a brush instrument and
specialize each of them with a different brush shape and paint color.

Currying and Reification: Reification creates new instruments, which can then
be curried to create more specific ones. Currying encourages the definition of
instruments requiring a larger number of parameters, since these more powerful
instruments can then be specialized. For example, rather than creating different
instruments for turning text bold, italic and underlined, a single instrument con-
trolling all three properties can be curried to create three instruments that control
each property, but also other instruments that control other combinations, such as
bold italic or bold underlined.

22 Michel Beaudouin-Lafon and Wendy E. Mackay

S5 Examples

This section describes a number of examples from the literature and from our own
work that illustrate the principles of Instrumental Interaction, even though some of
them were published before these principles were articulated.

5.1 Tool-based interactions

Many content-creation applications features tool palettes with icons representing
conventional tools such as brush, pen, or eraser. These tools match our description
of in-hand instruments: they must be grabbed by selecting them in the tool palette
before using them. While intuitive, this does not match our experience of using tools
on a physical desk: we grab a tool, then drop it nearby to grab another one so that
we can quickly grab the first one again. The fact that tools are stuck in tool palettes
in digital applications forces many round trips to the palette.

LocaLTooLs (Bederson et al., 1996) solves this problem by letting users drop the
tool they are holding with a double-click. The tool then stays on the work surface
where it was dropped and can be picked up again with a single click. LocaLTooLs
were designed for use by children and were found to be easier to use than a tool
palette.

Raisamo and Riiha (1996) describe an alignment stick that is used to align objects
by pushing them, much as one would use a ruler in the physical world. A modifier
key is used to move the stick “above” the objects so as to not push them. A user can
thus push a set of objects from below, then move the stick above them and push them
again from the top. Raisamo (1999) expand on this idea by providing other tools for
sculpting objects with carving, shrinking and cutting sticks.

These examples show that a tool-based approach can lead to simpler and more
expressive interactions. Children and novice users are more likely to understand a
tool-based interface than one based on commands hidden in menus. At the same
time, in-hand tools encourage the development of expertise: like physical brushes
and carving tools, digital brushes and carving sticks require precise gestures, whereas
commands usually rely on parameter setting with sliders or text fields.

5.2 Bimanual tools: TOOLGLASSES

When we use in-hand tools in the physical world we often use our two hands to,
e.g., hold the object in one hand and apply the tool with the other. Guiard (1987)
theorized the asymmetric role of the hands in bimanual action, whereby the non-
dominant hand acts first and sets the context for the dominant hand to act. This
arrangement is at play when we use combinations of tools, such as positioning a

Instrumental Interaction: A Step Beyond Direct Manipulation 23

AVA &¥ia
VaY,

Fig. 5 Left: TooLGLass for setting fill and border color; Right: MaGicLENs that shrinks ob-
jects to make them more visible (Need permission - https://www.billbuxton.com/tgml93.html and
https://dl.acm.org/doi/10.1145/166117.166126)

ruler with the non-dominant hand to draw a straight line with a pencil held in the
dominant hand.

TooLcGLAssEs (Bier et al., 1993) apply this principle to GUIs by turning tool
palettes, called toolglasses, into movable palettes controled by the non-dominant
hand. The non-dominant hand moves the toolglass over the object of interest and
the dominant hand then activates a tool in the palette with a “click-through”, i.e.
a click that determines both the tool to apply and the object to apply it to. The
prototype demonstrates a wide range of tools for actions such as coloring, setting text
attributes, or copy-pasting. MacicLENSEs complement toolglasses by transforming
the representation of objects, such as reversing the z-order, turning an image into
black-and-white or displaying a wireframe. Combining toolglasses and magic lenses
enhances their power, for example by letting users act on hidden parts of objects.
Studies show that toolglasses can be up to 40% faster than classical static palettes.

TooLcGLassEs demonstrate the power of using tools in combination and taking ad-
vantage of our natural skills in coordinating bimanual action. The CPN2000 (Beaudouin-
Lafon and Lassen, 2000; Beaudouin-Lafon and Mackay, 2000) Colored Petri Nets
editor combined toolglasses with static palettes, so that users could choose what
worked best for them. Any static palette could be turned into a semi-transparent
toolglass by clicking it with the non-dominant hand. CPN2000 also implemented a
bi-manual static palette, whereby the user grabbed a tool by clicking in the palette
with the non-dominant hand, and applied the tool with the dominant hand. This
proved to be even more efficient than toolglasses for some tasks, as it did not require
users to coordinate the placement of the toolglass over the object of interest to apply
a tool to it. The important lesson of this work however was to provide users with a
choice of interaction techniques so they could use the ones they were most familiar,
comfortable or efficient with.

5.3 Currying commands: SIDEVIEWS

SipeViews (Terry and Mynatt, 2002) provide “on-demand, persistent, and dynamic
previews of commands’: as the cursor hovers over a menu command or toolbar icon,
a live preview of the effect of that command on the current document is displayed
next to the cursor. While this technique is not instrumental, it features an interesting

24 Michel Beaudouin-Lafon and Wendy E. Mackay

XA Palar Coordinates BEE]
[¥] View parameters Apply
Before After
&) [BCTE)
File Edit Filter E cirdle

X whil and Pinch DiCIES)

T 999

[4
L

XH Polar Goordinates [=]alx]

=& B[By
‘ -

Fig. 6 Left and center: SiDEViEws showing the preview of two different filters;
Right: preview of the effect of two parameters of a filter (Need permission -
https://dl.acm.org/doi/10.1145/571985.571996)

combination of reification and currying that could be used with instruments. The
reification consists of turning the preview into a persistent window by clicking its
title bar. The preview window can then be moved around and closed when not needed
any more.

Currying occurs at two levels. First, the persistent preview windows are bound to
the command used to create them. This means that the user can create other persistent
previews for different commands. At the same time, the persistent previews are
bound to the current document: opening another document updates all the persistent
previews with that document; the user can therefore quickly switch among different
documents to see the effect of the same commands on different content.

Second, when a command uses additional parameters, such as different controls
for an image filter, the preview displays a range of results by sampling the parameter
space. The user can then control the range of each parameter to narrow down the
sampled space. The slider controlling each parameter is therefore an instrument that
controls this parameter while the other parameters and the target document are fixed.

5.4 Property instruments: OBJECT-ORITENTED DRAWING

OBJECT-ORIENTED DRAWING (Xia et al., 2016) is a tablet application for vector-based
drawing that reifies the properties of the objects into small interactive tiles attached
to the object (Fig. 7). Each tile is in effect an attached instrument that can be used
to change the value of the corresponding property by tapping it. A pinch-out gesture
expands the tile into a sequence showing the history of values of that property,
making it easy to perform local undo. Additional interactions let users link together
the values of different tiles, e.g. so that two objects share the same color. It is also

Instrumental Interaction: A Step Beyond Direct Manipulation 25

TAwaide

O S
e ,J) Z/D é/) 5

Fig. 7 The different interaction techniques for manipulating attribute objects in OBJECT-ORIENTED
Drawing (Need permission - https://dl.acm.org/doi/10.1145/2858036.2858075)

possible to interpolate between two values by tapping two tiles of the same type
simulateneously: the two tiles are linked and a third tile appears between them that
can be moved to show the interpolated value (Fig. 8).

OBIECT-ORIENTED DRAWING demonstrates the power of reification and of treating
the reified objects as instruments, i.e. as objects with agency over other objects. Each
tile not only shows the value of a property but also provides a rich set of action for
changing it, accessing its history, linking it to other objects, or combine it with other
values through interpolation. Attaching tiles to objects rather than using a single
property inspector provides additional power, e.g. for copying or linking properties,
or simply for visually comparing them. Finally, multitouch and bimanual interaction
on a touchscreen expand the vocabulary of actions and improve the power and
expressivity of the interface. For example, linking properties is achived by tapping
the source tile and, while still touching it, tapping the target of the link; Creating an
interpolator instrument is achieved by simulataneously tapping two tiles of the same

type.

Fig. 8 Interpolation between two shapes in OBJECT-ORIENTED DrAWING. The tile at the bottom can
be moved left to right to control the mix between the two shapes. The same technique works with
other properties, e.g. color (Need permission - https://dl.acm.org/doi/10.1145/2858036.2858075)

26 Michel Beaudouin-Lafon and Wendy E. Mackay

5.5 Alignment instrument: STickYLINES

Most graphical tools feature a set of commands for aligning and distributing graphical
objects horizontally or vertically along their centers or one of their sides. STicKy-
Lines (Ciolfi Felice et al., 2016) reifies these commands into a single instrument
that creates a new type of object: a magnetic guideline (Fig. 9) °. Graphical objects
can be attached to the guideline by moving them close to it, and removed from the
guideline by moving them away from it. The objects move with the guideline when
itis dragged, as if they were glued to it. The guideline therefore acts as an instrument
to manipulate the objects attached to it. The guideline is also an object of interest
that represents the group of objects: applying an instrument to the guideline, such as
a color tool, applies it to all the objects on the guideline.
The guideline has a number of parameters to control its behavior:

» Distribution may be enabled, in which case the objects move along the guideline
to maintain regular spacing;

e When distribution is enabled, the user can change the function mapping the rank
of the object to its position. By default the function is linear but can be changed
to, e.g., a sigmoid so that the objects on the left and right are further apart than
those in the middle (Fig. 11);

» Each object can be “tweaked”, i.e. offset from its default snapping position. This
is useful to adjust the visual alignment of objects, e.g. when layout out logos with
very different shapes (Fig. 10a). Similarly, the bounding box of each object can
be tweaked, which affects the layout when distribution is enabled (Fig. 10b).

The performance evaluation of StickyLines showed up to 40% performance
improvement over traditional align and distribute commands (Ciolfi Felice et al.,
2016). This is due to the fact that StickyLines keep objects aligned, and that users
can manipulate aligned objects as groups even when individual objects are attached
to multiple guidelines. StickyLINEs are demonstrably both simpler to use and more
powerful than traditional align/distribute commands.

A recent version of Adobe Illustrator features a similar concept, called the “Ob-
jects on path” tool '°. The user selects a set of object, a path, and clicks the “Objects
on path” tool, which snaps the objets to the path, As with StickyLINEs, the objects
stay attached to the path as it is manipulated, and they are re-distributed along the
path when an object is added to / removed from the path. The path also features con-
trols (i.e., embedded instruments) for rotating all the attached objects simultaneously
and for changing the extent of the path used for the layout.

9 Magnetic guidelines were first introduced in the CPN2000 project mentioned earlier (Beaudouin-
Lafon and Lassen, 2000; Beaudouin-Lafon and Mackay, 2000).

10 https://helpx.adobe.com/illustrator/using/objects-on-path.html

Instrumental Interaction: A Step Beyond Direct Manipulation 27

Fig. 9 Circular and linear StickyLines (left), parallel StickyLine (center) and Stickyline created
from an existing shape (right) and resized. The user attaches shapes to a StickyLine by moving
them onto it (By permission - image from the authors)

5.6 Text instruments: TEXTLETS

Word processors are one of the most heavily used applications, yet text editing has
not changed very much over the past decades. Most commands in word processors
are based on text selection: the user selects some text, invokes a command that affects
the text, e.g. to turn it bold, and the selection disappears as soon as the user clicks
elsewhere. So if the user wants to operate on text that had been selected before, they
have to select it again.

TexTLETS (Han et al., 2020) is based on the idea of turning transient text selections
into persistent objects: the user selects text and creates a textlet, which appears
in a sidebar; Clicking the textlet re-selects the corresponding text. The power of
TexTLETS comes from the fact that they are also remote instruments that operate on
their associated text. For example, a countlet is a textlet that counts words (Fig. 12
and displays the word count in real time, as the text is edited, while a variantlet is a
textlet that lets the user define several alternatives for the text and pick wich one to
display. A more sophisticated behavior is the searchlet (Fig. 13), which dynamically

Yy
(g@ (g@))(E\)(f

Fig. 10 Left: Tweaking the position (purple line) for visually correct alignment; Right: Tweaking
the bounding box (blue box) for visually correct distribution (By permission - image from the
authors)

28 Michel Beaudouin-Lafon and Wendy E. Mackay

Positions
Positions

Objects Objects

Fig. 11 Controlling the distribution of objects along a StickyLine. The red dots control the shape of
the curve and therefore the spacing between adjacent shapes on the guideline. Left: default (linear)
mapping; Right: sigmoid mapping to make objects in the middle closer together (By permission -
image from the authors)

creates textlets for each occurrence of the search text and lets users replace them one
by one, in the order they want, or all at once. Replaced occurrences are displayed in
a different color, and the user can undo and redo any change.

A study found TexTLETS particularly easy to use and efficient, giving users a sense
of control and appropriate feedback on their actions (Han et al., 2020). Users also
found unexpected uses, such as using a searchlet to automatically highlight words
that they had decided not to use in their text.

ABSTRACT

A current - interrupter devic... 12

A current - interrupter device (1) comprising a circuit breaker 12

Fig. 12 Textlet for counting words. The word counter appears both in the text itself and in the side
panel (By permission - image from the authors)

Instrumental Interaction: A Step Beyond Direct Manipulation

29

LA current - interrupter device (1) comprising a circuit breaker (2) including a
first stationary conductive support (4) carrying both a stationary arcing
contact (14) and a movable arcing contact (16) , carrying contact
(17) , the movable arcing contact (16) and the movable persistent contact (
17) being electrically connected to the first stationary support (4), and a
disconnector (3) including a second stationary conductive support (6) carry
ing a disconnector contact (18) , and wherein : the movable disconnector
contact (18) is in contact with the stationary arcing contact (14) when it is
closed and spaced apart from the stationary arcing contact (14) when it is
open ; and the movable disconnector contact (18) and the permanent contact
(17) are connected to each other when they are both in the closed position ,

persistent v X

6) and the movable persistent contact

tact (18) and the permanent contact (

stationary @ -

Fig. 13 Three textlets for searching and replacing text. The side panel lets users specify the
replace string, exclude matches from a global replace, and perform and undo global and individual
replacements. In the document, matching occurrences are highlighted with the same color as the
textlet, e.g. “stationary”’; replaced occurrences use the color of the textlet, e.g. “persistent”; excluded
matches are in grey, e.g. “permanent” (By permission - image from the authors)

30 Michel Beaudouin-Lafon and Wendy E. Mackay

6 Discussion

We concluded section 2 with five questions to be addressed in order to go beyond
the limitations of Direct Manipulation. How can we:

» extend the concept of the “object of interest”?

» expand Direct Manipulation to embrace indirect interaction?

* define a richer syntax of interaction?

* scale Direct Manipulation to larger numbers of objects and commands?
* increase the power of Direct Manipulation interfaces?

We now address these five questions, and then discuss the limitations of Instru-
mental Interaction and outline future work.

6.1 Beyond Direct Manipulation

6.1.1 Extending the concept of object of interest

Instrumental Interaction extends the notion of object of interest by creating new
objects called instruments. While these instruments are meant to be “transparent”
to the user (see below), they are also objects and can become the user’s focus, as
when a pencil needs sharpening and becomes the user’s object of interest, and the
pencil sharpener the tool. This is further enabled by the use of Currying, which
turns parameters of the commands issued by an instrument into properties of that
instrument. These properties can thus be changed by other instruments, such as
when changing the color of a brush. Instruments therefore can and should become
secondary objects of interest.

Moreover, the use of Reification leads to the creation of new objects that are not
instruments. We cited the example of styles, which users of word processors must
understand in order to use the system efficiently. Other examples include the layers
used in many drawing and image editing applications, or the processing nodes used
in the node-link diagrams of some procedural tools for describing the sources, filters
and other processing steps applied to generate output, such as video effects in the Da
Vinci Resolve video editor'! or 3D content in the Blender modelling system'?.

Creating more such objects of interest lead to creating new instruments (or making
existing instruments more polymorphic), which in turn may lead to identifying new
objects of interest. While this can lead to unwanted complexity (see below), turning
abstracts concepts into objects and instruments makes the interface more concrete
and facilitates learning.

1 https://www.blackmagicdesign.com/products/davinciresolve
12 https://docs.blender.org/manual/en/latest/interface/controls/nodes/introduction.html

Instrumental Interaction: A Step Beyond Direct Manipulation 31

6.1.2 From indirect to mediated interaction

Instrumental Interaction is by definition indirect: rather than acting directly on the
object of interest, the user acts on an instrument, which acts on the object. Yet,
because it is based on a familiar form of manipulation in the physical world, the tool
held in the hand becomes “transparent”, i.e. it becomes an extension of the user’s
body, at least until the tool breaks down or does not work as expected. In this case,
the focus turns to the instrument, which becomes the object of interest (see above).

Instruments create modes: grabbing an instrument enters a new interaction mode
where users’ actions have a different effect than in other modes. Modes are often
considered harmful, but even Larry Tesler, a strong opponent to modes, recog-
nized that “modes can be good when they support a metaphor like picking up a
brush” (Tesler, 2012). Indeed, instruments reduce the risks of mode errors because
they are ready-at-hand, i.e. they are internalized by the user.

While this internalization is arguably at play when using in-hand instruments,
what about embedded and remote instruments? With embedded instruments, the
sense of engagement results from the closeness between the instrument and the target
object and the immediate effect of manipulating the instrument, as if it were “pulling
strings” on the target object. With remote instruments, the sense of engagement is
less strong because the connection between the instrument and the target object is
less explicit. Unless the interface provides visual feedback, the user must remember
this connection, increasing cognitive load.

Like in-hand instruments, embedded and remote instruments create modes. How-
ever, whereas in-hand instruments create femporal modes, i.e. modes that are enabled
while the instrument is in-hand, embedded and remote instruments create spatial
modes, i.e. modes that are enabled while the cursor is over the instrument and in-
teracts with it. Depending on the context of use, one type of mode, and therefore
one type of instrument, may be more appropriate or effective for the user. Designers
should therefore provide different instruments for the same task, or let users trans-
form an in-hand instrument into an embedded or remote one, or vice-versa. The key
property of mediated interaction, however, is that actions on the instrument should
have a visible, immediate effect on the target object. In this sense, mediated inter-
action, and therefore Instrumental Interaction, satisfies the third principle of Direct
Manipulation.

6.1.3 Enriching the syntax of interaction

The previous discussion has highlighted that different types of instruments work
differently. In-hand instruments must be first picked up, and then the target object
must be specified, while embedded and remote instruments can be used directly,
since their target object is pre-determined. These two different syntaxes do not seem
to be a problem for users, probably because they correspond to natural actions in
the physical world: taking a tool in-hand, vs. acting on a control embedded into the

32 Michel Beaudouin-Lafon and Wendy E. Mackay

object, such as setting the temperature on an oven, vs. acting at a distance, such as
using a light switch to turn on a ceiling lamp.

The syntax of interaction can be enriched by using both hands. Many GUIs
use keyboard modifiers to affect the action of the tool controlled by the cursor.
TooLcLassEs (Bieretal., 1993) use the non-dominant hand to position the instrument
and the dominant one to act. OBJECT-ORIENTED DrAWING Xia et al. (2016) uses
multitouch input from one or both hands to enable powerful commands such as
linking and interpolating.

More generally, our natural hand dexterity is poorly used by GUISs. Increasing the
number of degrees of freedom captured by the input device and putting them to good
use, as discussed in section 3.2.3, obviates the need for complex syntax where the
result of a command depends, e.g., on the order in which objects have been selected.
Instrumental Interaction can help “deconstruct” complex commands into simpler
ones. For example, aligning objects in a traditional interface requires selecting the
objects to align, then the alignment type. If one object was omitted, adding it to the
alignement requires reselecting the objects and re-aligning them. Often times, this
moves all the objects as there is no way to know which reference point is used by the
align command. By contrast, STICKYLINES uses one action to create a new guideline,
and then the standard drag action to move objects onto/away from the guideline.
Having more objects to interact with makes it easier to leverage simple actions for
complex effects.

6.1.4 Scaling up to large numbers of objects and instruments

Turning commands into instruments and other concepts into objects can lead to
an increased complexity of the interface. Menus and toolbars of current GUIs are
already crowded, and typical interfaces feature a number of panes, panels and float-
ing windows. As mentioned earlier, Polymorphism can help reduce the number of
instruments by making them polymorphic. However this is unlikely to completely
solve the problem, especially since Currying, on the other hand, leads to the creation
of more specific instruments.

Looking at the kitchen of a chef, the workbench of a woodworker or the workshop
of a painter shows evidence that any sophisticated activity requires a large number
of objects and tools. The difference between these activities and the use of a desktop
application is that in the physical world, the expert taylors their environment for their
needs by organizing the space, selecting the subset of tools needed for a particular
task, and reconfiguring the space when switching activity. By contrast, the layout
of desktop applications and the content of their toolbars and menus is usually fixed
and cannot be changed, or only marginally. Some systems feature several “personas”
corresponding to different activities, such as de-rushing, video editing, sound editing
and color-grading in a video production system. Selecting a persona reconfigures
the interface for the corresponding activity, but the personas and the corresponding
layout are usually predefined.

Instrumental Interaction: A Step Beyond Direct Manipulation 33

Instrumental Interaction encourages users to pick the instruments and objects they
work with. Not only the instruments but also the toolbars they live in, and therefore the
entire layout of the interface, should be configurable. Users should be able to easily
import new instruments, create new ones through Currying or by combining existing
instruments together, and more generally taylor the entire interface to their needs.
These configurations should themselves be first-class objects that can be saved and
recalled, maybe in the form of personas. Externalizing these configurations would
allow a user to work on someone else’s computer and instantly adapt the interface to
his or her practice.

6.1.5 Increasing power and simplicity

We have illustrated a number of situations where the use of Instrumental Interaction
leads to interfaces that are simpler to use yet more powerful than traditional GUIs.
For example, StickyLINES makes it easier to align objects than traditional align-
ment commands, but also makes it more powerful because the alignement can be
maintained when adding/removing objects, and aspects of the alignement such as
the distribution of objects or the “tweaks” to their position or size, can be controlled
by the user.

Increased simplicity stems from the fact that physical actions are easier to under-
stand and learn than the vocabulary of commands typically found in menus. Some
actions, such as snapping an object to a guideline that can then be moved, qualify as
“one-try-learning”, i.e. seeing it once is enough to understand it and being able to
use it. Simplicity also relies on our ability to perceive affordances of digital objects
and our knowledge of the underlying “technical laws” for manipulating them (see
section ??).

Increased power stems from the ability to embed more complex behaviors into in-
struments than in traditional commands. For example, the tiles of OBJECT-ORIENTED
DrawinGg embody not only the current value of a property but also its previous
values, providing instant access to the history and the ability to revert to a previous
state. Increased power can also result from the ability to create new instruments by
combining existing ones. For example, MaGICLENSEs can be combined with TooL-
GLASSEs simply by superposing them, enabling the user to interact with the hidden
parts of an object revealed by the magic lens.

The generative principles help combine power and simplicity in various ways.
Reification increases both power and simplicity by creating new objects for the
user to manipulate. Polymorphism increases simplicity by reducing the number of
instruments, and increases power by resulting in instruments that can be applied
to a wider range of objects. Currying increases simplicity by letting users create
specialized tools. Input Reuse increases power by capturing previous input, which
can be used to create new instruments, similar to macros and scripts in command-line
interfaces. Output Reuse increases simplicity by making it possible to reuse content
rather than having to re-create it.

34 Michel Beaudouin-Lafon and Wendy E. Mackay

6.2 Limitations and future work

Instrumental Interaction is based on a metaphor of tool-use and is therefore well-
suited to interfaces where objects can be represented visually and their properties
manipulated through appropriate tools. Instrumental Interaction is not adapted to
dialogue-based interfaces, where the user issues commands in a natural or artificial
language, as in command-line interfaces or the recent wave of prompt-based inter-
faces for interacting with generative Al systems such as ChatGPT'? or MidJourney'4.
Compared to command-line interfaces, Instrumental Interaction lacks the ability to
abstract over objects and commands and therefore of a language to create new instru-
ments, similar to how Linux users can create their own scripts. This is clearly an area
for research on instruments for creating instruments, e.g. using programming-by-
demonstration (Cypher et al., 1993) or other approaches. Regarding prompt-based
interaction, we note that recent work such as DirectGPT (Masson et al., 2024) has
focused on combining prompts with more direct manipulations. We expect this trend
to continue and provide users with more instrumental interfaces to Al systems.

Another challenge for Instrumental Interaction is movement-based interfaces,
which are often based on free-hand and/or full-body gestures. Gesture-based inter-
faces are common on touch-based devices such as tablets and smartphones, where
the gestures are performed directly on the surface. Free-hand and full-body gestures
are common in Virtual Reality (VR) and Augmented Reality (AR) interfaces. While
some gestures, such as pinch-to-zoom on a tablet or pinch-to-grab in an AR/VR
interface, can be seen as instrumental, others are symbols that the user needs to learn
and learn to perform, such as three-finger pinch or four-finger swipe. The fact that
a touch-based interface lets users litterally touch the content makes it more diffi-
cult to design a mediated interaction, although OBJECT-ORIENTED DRAWING shows
that it is indeed possible. In AR/VR environments, the use of tools seems natural
and is common, but the lack of haptic and kinesthetic feedback can make physical
interactions with objects and tools deceptive. Further work is therefore needed to in-
vestigate appropriate design principles for Instrumental Interaction in gesture-based
environments.

Tangible interfaces, on the other hand, are a natural area for expanding Instru-
mental Interaction beyond desktop interfaces. Graspable interfaces (Fitzmaurice
et al., 1995) demonstrated the value of using physical objects for manipulating
digital ones, and the ReactaBLE!? is a good example of an actual product based
on physical manipulation of blocks representing sound-processing instruments that
can be connected together. Not sure whether to cite this and what else to say:
ToucHTokENs (Morales Gonzdlez et al., 2016) bridge the gap between tangible and
touch-based interaction...

Finally, Instrumental Interaction needs software toolkits and frameworks to facili-
tate the implementation of instrumental interfaces on today’s platforms. Current user

13 https://chatgpt.com
14 https://www.midjourney.com
15 https://reactable.com

Instrumental Interaction: A Step Beyond Direct Manipulation 35

interface toolkits are centered on the notion of “widget”, a self-contained interactive
object such as a button, text field or menu. Instruments break many of the assump-
tions built into existing toolkits because they are not self-contained: by definition,
they interact with another object which may be anywhere on the screen and in the
in-memory model of the interface. Ideally, instruments should even work across
applications rather than being trapped inside each running application. This breaks
the heavy barriers set up by operating systems and the applications themselves, e.g.
the difficulty for two tabs of the same web browser to communicate together. Fully
embracing Instrumental Interaction would require a deep redesign of the software
stack going from the operating system all the way to the graphics and user interface
layers of today’s computers. Projects such as WEBsTRATEs (Klokmose et al., 2015)
provide a glimpse into a world without applications, where content and tools can
be freely mixed and appropriated by users. In the meantime, however, instrumen-
tal toolkits cite Stratify?? should be developed to bring Instrumental Interaction to
standard desktop and tablet interfaces.

36 Michel Beaudouin-Lafon and Wendy E. Mackay

7 Summary and Conclusion

Future work: Al + Instrumental Interaction

Instrumental Interaction: A Step Beyond Direct Manipulation 37

Acknowledgements This work was partially supported by European Research Council (ERC)
grants #321135 “CREATIV: Creating Co-Adaptive Human-Computer Partnerships” and #695464
“ONE: Unified Principles of Interaction”.

References

Appert C, Fekete JD (2006) Orthozoom scroller: 1d multi-scale navigation. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
ACM, New York, NY, USA, CHI ’06, p 21-30, DOI 10.1145/1124772.1124776,
URL https://doi.org/10.1145/1124772.1124776

Beaudouin-Lafon M (2000) Instrumental interaction: An interaction model
for designing post-wimp user interfaces. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ACM, New York,
NY, USA, CHI °00, pp 446453, DOI 10.1145/332040.332473, URL
http://doi.acm.org/10.1145/332040.332473

Beaudouin-Lafon M (2001) Novel interaction techniques for overlapping windows.
In: Proceedings of the 14th Annual ACM Symposium on User Interface Soft-
ware and Technology, ACM, New York, NY, USA, UIST ’01, p 153-154, DOI
10.1145/502348.502371, URL https://doi.org/10.1145/502348.502371

Beaudouin-Lafon M (2004) Designing interaction, not interfaces. In: Proceed-
ings of the Working Conference on Advanced Visual Interfaces, ACM, New
York, NY, USA, AVI ’04, p 15-22, DOI 10.1145/989863.989865, URL
https://doi.org/10.1145/989863.989865

Beaudouin-Lafon M, Lassen HM (2000) The architecture and implementation of
cpn2000, a post-wimp graphical application. In: Proceedings of the 13th An-
nual ACM Symposium on User Interface Software and Technology, ACM, New
York, NY, USA, UIST °00, p 181-190, DOI 10.1145/354401.354761, URL
https://doi.org/10.1145/354401.354761

Beaudouin-Lafon M, Mackay WE (2000) Reification, polymorphism and
reuse: Three principles for designing visual interfaces. In: Proceedings
of the Working Conference on Advanced Visual Interfaces, ACM, New
York, NY, USA, AVI 00, pp 102-109, DOI 10.1145/345513.345267, URL
http://doi.acm.org/10.1145/345513.345267

Beaudouin-Lafon M, Bgdker S, Mackay WE (2021) Generative theories of in-
teraction. ACM Transactions on Computer-Human Interaction 28(6), DOI
10.1145/3468505, URL https://doi.org/10.1145/3468505

Bederson BB, Hollan JD, Druin A, Stewart J, Rogers D, Proft D (1996) Lo-
cal tools: an alternative to tool palettes. In: Proceedings of the 9th Annual
ACM Symposium on User Interface Software and Technology, ACM, New
York, NY, USA, UIST °96, p 169-170, DOI 10.1145/237091.237116, URL
https://doi.org/10.1145/237091.237116

Bier EA, Stone MC, Pier K, Buxton W, DeRose TD (1993) Toolglass and
magic lenses: the see-through interface. In: Proceedings of the 20th Annual

38 Michel Beaudouin-Lafon and Wendy E. Mackay

Conference on Computer Graphics and Interactive Techniques, ACM, New
York, NY, USA, SIGGRAPH °93, p 73-80, DOI 10.1145/166117.166126, URL
https://doi.org/10.1145/166117.166126

Ciolfi Felice M, Maudet N, Mackay WE, Beaudouin-Lafon M (2016) Beyond
snapping: Persistent, tweakable alignment and distribution with stickylines.
In: Proceedings of the 29th Annual Symposium on User Interface Software
and Technology, ACM, New York, NY, USA, UIST ’16, pp 133-144, DOI
10.1145/2984511.2984577, URL http://doi.acm.org/10.1145/2984511.2984577

Cypher A, Halbert DC, Kurlander D, Lieberman H, Maulsby D, Myers BA, Turransky
A (eds) (1993) Watch what I do: programming by demonstration. MIT Press,
Cambridge, MA, USA

Fitzmaurice GW, Ishii H, Buxton WAS (1995) Bricks: laying the foundations
for graspable user interfaces. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ACM Press/Addison-Wesley Pub-
lishing Co., USA, CHI °95, p 442-449, DOI 10.1145/223904.223964, URL
https://doi.org/10.1145/223904.223964

Gibson EJ (1969) Principles of Perceptual Learning and Development. Appleton &
Co

Gibson JJ (1979) The ecological approach to visual perception. Houghton, Mifflin
and Company, Boston, Massachusetts

Guiard Y (1987) Asymmetric division of labor in human skilled bi-
manual action. Journal of Motor Behavior 19(4):486-517, DOI
10.1080/00222895.1987.10735426

Han HL, Renom MA, Mackay WE, Beaudouin-Lafon M (2020) Textlets: Sup-
porting constraints and consistency in text documents. In: Proceedings of
the 2020 CHI Conference on Human Factors in Computing Systems, ACM,
New York, NY, USA, CHI ’20, p 1-13, DOI 10.1145/3313831.3376804, URL
https://doi.org/10.1145/3313831.3376804

Harmand S, Lewis JE, Feibel CS, Lepre CJ, Prat S, Lenoble A, Boés X, Quinn RL,
Brenet M, Arroyo A, Taylor N, Clément S, Daver G, Brugal JP, Leakey L, Mortlock
RA, Wright JD, Lokorodi S, Kirwa C, Kent DV, Roche H (2015) 3.3-million-year-
old stone tools from Lomekwi 3, West Turkana, Kenya. Nature 521(7552):310-
315, DOI 10.1038/nature14464, URL https://doi.org/10.1038/nature 14464

Hoarau R, Conversy S (2012) Augmenting the scope of interactions with
implicit and explicit graphical structures. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ACM, New York,
NY, USA, CHI 12, p 1937-1946, DOI 10.1145/2207676.2208337, URL
https://doi.org/10.1145/2207676.2208337

Hutchins EL, Hollan JD, Norman DA (1985) Direct manipulation interfaces. Human-
Computer Interaction 1(4):311-338, DOI 10.1207/s15327051hci0104_2, URL
https://doi.org/10.1207/s15327051hci0104_2

Johnson J, Roberts T, Verplank W, Smith D, Irby C, Beard M, Mackey K (1989) The
Xerox Star: A retrospective. Computer 22(9):11-26, DOI 10.1109/2.35211

Instrumental Interaction: A Step Beyond Direct Manipulation 39

Klatzky RL, MacWhinney B, Behrman M (2008) Embodiment, ego-space, and
action. Series: Carnegie Mellon Symposia on Cognition Series, Psychology Press,
New York, NY, USA

Klokmose CN, Eagan JR, Baader S, Mackay W, Beaudouin-Lafon M (2015)
Webstrates: Shareable dynamic media. In: Proceedings of the 28th Annual
ACM Symposium on User Interface Software & Technology, Association for
Computing Machinery, New York, NY, USA, UIST 15, p 280-290, DOI
10.1145/2807442.2807446, URL https://doi.org/10.1145/2807442.2807446

Kruger R, Carpendale S, Scott SD, Tang A (2005) Fluid integration of rotation
and translation. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ACM, New York, NY, USA, CHI ’05, p 601-610, DOI
10.1145/1054972.1055055, URL https://doi.org/10.1145/1054972.1055055

Mackay W (2000) Responding to cognitive overload: Co-adaptation between users
and technology. Intellectica 30(1):177-193, DOI 10.3406/intel.2000.1597

Mackay WE (2002) Which interaction technique works when? floating palettes,
marking menus and toolglasses support different task strategies. In: Proceed-
ings of the Working Conference on Advanced Visual Interfaces, ACM, New
York, NY, USA, AVI °02, p 203-208, DOI 10.1145/1556262.1556294, URL
https://doi.org/10.1145/1556262.1556294

Mackay WE, Beaudouin-Lafon M (2005) Generative approaches to simplicity in
design. In: International Forum: Less is More - Simple Computing in an Age of
Complexity, Microsoft Research, Cambridge, UK

Masson D, Malacria S, Casiez G, Vogel D (2024) Directgpt: A direct ma-
nipulation interface to interact with large language models. In: Proceedings
of the 2024 CHI Conference on Human Factors in Computing Systems,
ACM, New York, NY, USA, CHI °24, DOI 10.1145/3613904.3642462, URL
https://doi.org/10.1145/3613904.3642462

Morales Gonzdlez R, Appert C, Bailly G, Pietriga E (2016) Touchtokens: Guiding
touch patterns with passive tokens. In: Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems, Association for Computing Machinery,
New York, NY, USA, CHI ’16, p 4189-4202, DOI 10.1145/2858036.2858041,
URL https://doi.org/10.1145/2858036.2858041

Nancel M, Wagner J, Pietriga E, Chapuis O, Mackay W (2011) Mid-air pan-and-
zoom on wall-sized displays. In: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, Association for Computing Machinery, New
York, NY, USA, CHI "11, p 177-186, DOI 10.1145/1978942.1978969

Osiurak F (2014) What neuropsychology tells us about human tool use? the four
constraints theory (4ct): Mechanics, space, time, and effort. Neuropsychology
Review 24(2):88-115, DOI 10.1007/s11065-014-9260-y

Raisamo R (1999) An alternative way of drawing. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ACM, New
York, NY, USA, CHI ’99, p 175-182, DOI 10.1145/302979.303035, URL
https://doi.org/10.1145/302979.303035

Raisamo R, Riaihd KJ (1996) A new direct manipulation technique for align-
ing objects in drawing programs. In: Proceedings of the 9th Annual

40 Michel Beaudouin-Lafon and Wendy E. Mackay

ACM Symposium on User Interface Software and Technology, ACM, New
York, NY, USA, UIST °96, p 157-164, DOI 10.1145/237091.237113, URL
https://doi.org/10.1145/237091.237113

Renom MA, Caramiaux B, Beaudouin-Lafon M (2022) Exploring technical reason-
ing in digital tool use. In: Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems, ACM, New York, NY, USA, CHI ’22, DOI
10.1145/3491102.3501877, URL https://doi.org/10.1145/3491102.3501877

Renom MA, Caramiaux B, Beaudouin-Lafon M (2023) Interaction knowl-
edge: Understanding the ‘mechanics’ of digital tools. In: Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems,
ACM, New York, NY, USA, CHI °23, DOI 10.1145/3544548.3581246, URL
https://doi.org/10.1145/3544548.3581246

Shneiderman B (1983) Direct manipulation: A step beyond programming
languages. Computer 16(8):57-69, DOI 10.1109/MC.1983.1654471, URL
https://doi.org/10.1109/MC.1983.1654471

Shneiderman B (1997) Designing the User Interface: Strategies for Effective Human-
Computer Interaction, 3rd edn. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA

Shneiderman B, Williamson C, Ahlberg C (1992) Dynamic queries: database search-
ing by direct manipulation. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM, New York, NY, USA, CHI °92, p 669-670,
DOI 10.1145/142750.143082, URL https://doi.org/10.1145/142750.143082

Shneiderman B, Plaisant C, Cohen M, Jacobs S, Elmqvist N, Diakopoulos N (2017)
Designing the User Interface: Strategies for Effective Human-Computer Interac-
tion, 6th edn. Pearson, Hoboken, NJ, USA

Sutherland IE (1963) Sketchpad: a man-machine graphical communication sys-
tem. In: Proceedings of the May 21-23, 1963, Spring Joint Computer Con-
ference, ACM, New York, NY, USA, AFIPS 63 (Spring), p 329-346, DOI
10.1145/1461551.1461591, URL https://doi.org/10.1145/1461551.1461591

Terry M, Mynatt ED (2002) Side views: persistent, on-demand previews for open-
ended tasks. In: Proceedings of the 15th Annual ACM Symposium on User Inter-
face Software and Technology, ACM, New York, NY, USA, UIST *02, p 71-80,
DOI 10.1145/571985.571996, URL https://doi.org/10.1145/571985.571996

Tesler L (2012) A personal history of modeless text editing and
cut/copy-paste. Interactions 19(4):70-75, DOI 10.1145/2212877.2212896, URL
https://doi.org/10.1145/2212877.2212896

Xia H, Araujo B, Grossman T, Wigdor D (2016) Object-oriented drawing. In:
Proceedings of the 2016 CHI Conference on Human Factors in Comput-
ing Systems, ACM, New York, NY, USA, CHI 16, p 4610-4621, DOI
10.1145/2858036.2858075, URL https://doi.org/10.1145/2858036.2858075

