
Intellectica, 2000/1, 30, pp. 177-193

Wendy E. MACKAY*

Responding to cognitive overload:
Co-adaptation between users and technology

This study examines how the first users of the X-Window system, the
administrative staff at MIT's Project Athena, coped with this complex new
technology. By examining their use of customization files over a period of
six months, we were able to track how they responded to both
organizational and technological changes. We found clear evidence of co-
adaptation: individuals both adapted to the new technology, influenced by
its design, implementation and use within the local work environment, and
they adapted it for their own purposes, reinterpreting it in ways
unanticipated by the technology’s designers. This study provides evidence
that users' co-adaptation of technology is a useful mechanism for
addressing cognitive overload. It also suggests how taking co-adaptation
into account when designing new technology can help users manage the
growing complexity of their work environments and the corresponding
increase in cognitive overload.

Keywords: Co-adaptive systems, customization, user innovation,
participatory design, information filtering.

Réagir à la surcharge cognitive : co-adaptation entre utilisateurs et
technologie. Cette étude analyse comment les premiers utilisateurs du
système de fenêtrage X-Window System, l'équipe administrative du projet
Athena au MIT, ont abordé cette nouvelle technologie. En examinant leur
utilisation des fichiers de personnalisation du système sur une période de six
mois, nous avons pu suivre comment ils ont réagi à des changements à la
fois organisationnels et technologiques. Nous avons mis clairement en
évidence un phénomène de co-adaptation : les individus se sont adaptés à
la nouvelle technologie, influencés par sa mise en œuvre et son usage dans
l'environnement local, et ils l'ont adaptée à leurs propres besoins, la
réinterprétant sous des formes non anticipées par leurs concepteurs. Cette

* Visiting Professor, Department of Computer Science, Aarhus University
Ny Munkegade, building 540, DK-8000 Aarhus C, DENMARK
mackay@daimi.au.dk

178 Wendy E. MACKAY

étude fournit une preuve que la co-adaptation des utilisateurs à la
technologie est un mécanisme utile pour gérer la surcharge cognitive. Elle
suggère également que la prise en compte de la co-adaptation lors de la
conception d'une nouvelle technologie peut aider les utilisateurs à gérer la
complexité croissante de leur environnement de travail et l'augmentation
correspondante de la surcharge cognitive.

Mots-clés : Systèmes co-adaptatifs, personnalisation, innovation par les
utilisateurs, conception participative, filtrage d'information

INTRODUCTION

Although computer technology is usually justified in terms of
increasing human productivity, it often has the opposite effect, creating
more complex work situations that reduce productivity and increase
cognitive overload (Landauer, 1995). Building more effective
technologies requires a better understanding this complex relationship
between technology and its use. Orlikowski (1992) identifies two basic
research strategies: the “organizational imperative” in which decision-
makers appropriate technology, and the “technological imperative” in
which the technology influences the actions of people in the
organization. Zuboff (1988) provides an extensive review of the former
approach. She argues that managers choose between technologies that
“automate” work and those that “informate” work: the former treats
users as simply another component in the work process whereas the
latter empowers them to make decisions and operate autonomously.
Other researchers emphasize the effect of new technology on the
organization. For example, Barley (1986) showed how the introduction
of identical CT scanners resulted in different organizational structures
in two Radiology departments. Studies by Sproull and Kiesler (1986)
and Eveland and Bikson (1988) both found that the introduction of
electronic mail changed the nature of communication within the
organization, affecting both the organizational structure and the actual
information conveyed.

These studies analyze human behavior at the organizational level:
Some groups, i.e. managers and technology support, specify the
technology to be used by other groups of employees. Yet organizations
are composed of individuals, each of whom must cope with changing
technology in their own ways. Are these individuals simply passive
recipients of new technology, with their use dictated entirely by
organizational rules and the system design? A two-year study of an early
electronic mail filter (Mackay, 1988) demonstrated that individuals

Responding to cognitive overload 179

often re-interpret and sometimes actively change technology. The
Information Lens was originally presented as a sort of “automatic
secretary” designed to prioritize messages prior to the user seeing
them. Several individuals discovered a way to run filtering rules after
reading their messages, effectively creating an automated filing system.
This re-interpretation of the system caused the system developers to re-
design the next version of Lens, explicitly giving users multiple rule
sets to accommodate both the “automatic secretary” and the “automatic
filer” usage models. Users again re-interpreted the system: They
created specialized rulesets to accommodate changes in their work
context. Thus “vacation rules”, used after an absence of a week or more,
would aggressively delete messages that would otherwise have been
retained. The Information Lens study showed that individuals do not
simply respond to technology, they re-interpret it and adapt it for their
current needs, often in ways unanticipated by the designers of the
system.

This phenomenon is called co-adaptation, Mackay (1990a), because
individuals both adapt to the technology, but also adapt it for their own
purposes. The term is influenced by the related phenomenon in
evolution. Until recently, scientists examined how the environment
affected plants and animals, treating it as an independent variable
influencing evolution. Later researchers, such as Lovelock (1979) and
Margulies (1986), pointed out that living organisms actively change the
environment, as well as react to it. Thus, for example, the composition
of today’s atmosphere is due to a complex interaction between living
organisms and the physical earth, over millions of years. Successive
generations of plants and animals changed the atmosphere to the point
that we, as human beings, can now exist. The term co-evolution captures
the idea of these two interdependent cycles of change. Since human
responses to technology occur within a much shorter time-frame, I have
used the term co-adaptation instead.

Clearly not all new technology results in overload situations and
equally clearly, some individuals are better at coping than others. This
paper examines how members of the administrative staff at MIT’s
Project Athena successfully (or unsuccessfully) co-adapted to the
constantly changing X-Window system, via use of customization files.
The paper then suggests how technology designers can explicitly take
co-adaptation into account when creating new technology, providing
users with on-going support for adapting the technology to meet their
current needs.

180 Wendy E. MACKAY

CUSTOMIZATION AT MIT'S PROJECT ATHENA

The X-Window System, developed at MIT’s Project Athena, has
become a world-wide standard for Unix workstations. This study
examines how the first group of users, the administrative staff at
Project Athena, coped with incessant technological change and extreme
cognitive overload by customizing their software environments.
Customization files provided an unusually good dataset for studying co-
adaptation because individual patterns of use were encoded and
continued to influence each user's behavior over time. The range of
possible customizations was constrained by the software design, but
could also be modified by users in unanticipated ways, as they
appropriated the software for their own purposes. Because
customization patterns are recorded in files that can be shared among
users, customizations often served to informally establish and
perpetuate group norms of behavior. Since these patterns were encoded
naturally, they offered an important record of customization patterns as
they changed over time.

Research Setting: MIT's Project Athena

Project Athena was an "experiment in educational computing" at the
Massachusetts Institute of Technology (MIT). Sponsored jointly by
Digital Equipment Corporation and IBM in 1983, the eight-year, $100
million project resulted in several world-wide software standards
including the X-Window System (Scheiffler & Gettys, 1986) and
influenced the strategic direction of the computer industry (Lampe,
1988, Champine, 1987). In 1990, Project Athena was the world's largest
centrally-administered distributed computer environment, with over
1000 high-performance workstations distributed throughout the MIT
campus.

Research Method

The purpose of the study was to provide an in-depth look at the
customization activities of active users of the Athena software
environment. Project Athena's staff were of particular interest because
they were lead users (von Hippel, 1986) of a work environment that is
now common place. Staff members were the first to experience
problems and had the power and resources to make innovative changes.
It is important to emphasize that, although they are located at a
University, the Athena staff's deadlines were real. A software company
may "slip" a hardware or software release date, but MIT never slips the

Responding to cognitive overload 181

beginning of the semester. An error in a software release affected
thousands of people. The MIT community is both forgiving (students
graduate, encouraging early mistakes to be forgotten) and critical
(members of this community were articulate in criticizing Athena on a
number of levels) (Turkle, 1984). The MIT culture supports a "let many
flowers bloom" philosophy which encourages diversity. There is a
corresponding "survival of the fittest" philosophy, in which only the best
survive. Both of these philosophies are reflected in the projects and
software supported by Project Athena.

Participants

The Project Athena staff consisted of approximately 80 people
during the course of the study, including managers, secretaries,
technical and non-technical staff. They provided a variety of services,
similar to the MIS department of a large corporation. Over 60 staff
members participated in some part of the study, but several left Project
Athena and several did not complete all of the questionnaires. 51 people
completed all of the interviews and supplied all of the requested data.
The study participants included a cross-section of managers,
administrative personnel and both technical and non-technical individual
contributors.

All members of the Athena staff had at least one workstation in their
offices. Staff members had individual accounts, could access the
internet, and had disk quotas for backed up file storage. Major upgrades
were tested on the staff first and then introduced at the beginning of
each semester and at the beginning of the summer term.

Customization environment

Unlike the Apple Macintosh’s unified user interface philosophy,
Unix and the X-Window System provide many user interface choices. In
fact, no individual has complete control over the interface: it is
determined by decisions made by system programmers, system
administrators, application developers and the end user. The result is a
highly flexible but also sometimes unpredictable environment (Norman,
1981). In order to protect themselves, users would minimize confusion
and reduce overload by creating standard customizations across
applications. Users could express preferences at different levels,
including how an application looks (e.g. font sizes, borders, colors,
shapes) and how to interact with it (mouse, key bindings, menus, etc.).
Some choices affected all applications, such as the choice of a window

182 Wendy E. MACKAY

manager or the use of "X resources". Others were specific to an
application. Customization was generally accomplished by editing a
separate file (referred to as a "dot file"). Some users were unaware of
the existence of these files, which did not appear in a normal directory.
These files can be edited with any text editor and are executed whenever
the application is run. Users could exchange parts or all of these files
with each other by copying them or via electronic mail. Some
customizations were highly visible and might be noticed by someone
walking by, such as an unusual pattern on the background screen. Other
items were less noticeable, particularly choices of keys and
specifications about process, and would only be noticed if someone was
watching the user carefully and noticed a difference from the observer's
own pattern of use.

Data

The data consist of open-ended interviews (conducted in several
iterations over four months), questionnaires, and automatic records of
customization activities, in addition to informal discussions about
customization with some participants. Prior to each interview,
participants were asked to fill out a two-page questionnaire with
background information, e.g., their programming backgrounds and
current job responsibilities, information about which software they use,
which applications they customize and how much, and the sources of
information they use to find out how to make a particular customization.
Participants then filled out two additional questionnaires, during or after
the interviews, including information about:

1. Sources of information about customization
2. Levels of use of different Athena applications
3. Levels of customization of different applications
4. Levels of conversation with other staff members
5. Sources and recipients of customization files
The latter two questionnaires were modeled after the sociogram

devised by Allen (1972) for the purpose of identifying communication
networks within an organization. Cross-checks were made to see
whether people who were identified as borrowers identified themselves
as having borrowed the files, and vice versa. Customization files often
contained a header that identified the file's creator and the people who
had subsequently modified it. The following records were also extracted
directly from the workstation:

1. A file with the dates of all system upgrades for that workstation.

Responding to cognitive overload 183

2. A list of customization files, with sizes and modification dates,
ordered by date.

3. Selected customization ("dot") files.
4. The standard screen layout.
5. A list of current aliases.
6. Protection status of files (whether open or closed).
This data captured most, but not all, of the sharing within the

organization. For example, one person might try a feature she noted on
another person's screen and then delete it again before the next data
sample was taken. Also, people did not always remember the sources
and recipients of customization files, especially if the exchange
occurred months or years ago. People tended to remember who spent a
great deal of time helping them, but not someone that they borrowed
something from on the spur of the moment. Thus, these data under-
represent the level of sharing within the organization. Additional data
included the staff mailing list, informal discussions with staff members,
a review of the on-line consulting system logs (which included hundreds
of questions about customization), organization charts and a list of
office changes.

Interviews were conducted in each participant's office to help trigger
their memories and to make it easier to ask questions about particular
files or customization activities. Each participant was asked to print out
a second copy of the ordered list of customization files, which provided
an indication of the rate of customizing and identified which files had
been changed. Participants were then asked to show their customization
files, describe the reasons for the customizations and explain the
circumstances under which they were made, particularly if they were
borrowed from or given to another person. Participants were also asked
to remember recent critical incidents (Chapanis, 1969) from the
previous week.

RESULTS

Users customized software for a variety of reasons, not the least of
which was coping with cognitive overload. Giddens' (1984) theory of
structuration identifies the reciprocal interaction of human actors and
structural features of the organization.

184 Wendy E. MACKAY

File Name : FIG.model
Pages : 1

Figure 1: Factors that affect how people adapt technology and how they adapt
it for their own purposes (from Mackay, 1990a).

Figure 1 highlights the main components of this model (arrows a, b,
c, d), in which institutional properties and general properties of the
technology affect the users’ use of the technology, users affect the
technology, and the technology affects the institution. I have extended
this model to include the effect of individual decisions on others in the
group (arrow e), the effect of external events on individual decisions
(arrow f), the relationship between individual factors and users’
decisions to explicitly customize their software environment (arrows g
and h) and the relationship between software manufacturers and the
specific technology used within the organization (arrows i and j).
Giddens’ analysis operates at the organizational level, whereas as this
analysis is primarily focused at the individual and group level.

Table 1 summarizes the factors that users cited as both triggers and
barriers in their decision-making process about when and how to
customize software. The factors are listed from most to least common
based on the categories identified in Figure 1, preceded by the
percentage of study participants who cited that factor. Note that these
data were compiled from open-ended questions and as users explained
specific reasons for making or avoiding particular customizations.

Responding to cognitive overload 185

Participants were not given this list and asked to identify those that were
relevant to them.

Participants identified 31 unique triggers (from a total of 226), an
average of 4.4 triggers cited per person. All but two participants cited at
least one trigger and one person cited 11. Participants identified 20
unique barriers and cited a total of 102, an average of two barriers per
person. All but four participants cited at least one barrier and one
person cited seven.

Triggers: Several overload situations acted as triggers to
customization. Participants were most likely to customize when they
discovered that they were doing something repeatedly and chose to
automate the process. Equally common was a reaction to a system
change, when users would retrofit the software to act as it did prior to
the system change. Also very common was customization for the
purpose of stopping something that was annoying or slow. (This was
often cited in conjunction with the repetition.) Other triggers included
discovery of things that no longer worked or trying to create a stable
environment to support switching among environments (either among
different machines or from home to work). Other triggers that were not
associated with coping with cognitive overload included observation of
what their colleagues had done or exploring the system when it was new.

Barriers: Of course, people did not always cope with overload
situations by customizing. The biggest barrier was lack of time, cited by
almost two thirds of the participants. Lack of knowledge about
customizing (33%) was also a big barrier. Lack of interest in
customizing and the general feeling that a particular problem is not
worth fixing were also cited.

 Percent Customization Percent Customization
 of users Triggers of users Barriers

Technology
 29% Something breaks 33% Too hard to modify
 25% Learn new system 10% Poor documentation
 25% Switch environments 6% New customization format
 2% File system gets full 4% Unpleasant customization process
 2% Poor documentation 4% System is too slow
 4% Avoid software to avoid retrofit
 2% Software too limited
 2% Too cumbersome to find information

The Organization
 39% I see something neat 8% Use Athena's standard commands

186 Wendy E. MACKAY

 25% Setup for me when I arrived
 4% Someone posts an idea
 4% Make generalizable for others
 2% My manager suggested it

External events
 43% Retrofit when system changed 12% System upgrade broke things
 12% Change job or activities 4% Early bad experience
 10% Urgent need 2% System changes too often
 4% Test new application
 4% System upgrade

Individual factors
 43% Notice my open repeated patterns 63% Lack of time
 41% When it gets too annoying 12% I'm not interested
 22% I think of something new 10% Lack isn't painful enough
 18% Learn from it, curiosity 8% I'm rooted in my old patterns
 16% I delete when I don't need it 6% I don't know the possibilities
 14% Aesthetics 6% I'm afraid to risk it
 14% When I'm bored or waiting 4% I don't know what I need yet
 10% Whim 2% I refuse to sanction it
 6% Increase productivity
 6% It's fun
 6% I'm bored with current one
 4% Remove clutter
 4% My mental timer goes off
 4% Finally understand a customization
 4% Increase efficiency
 2% Tending my personal repertoire

 31 Unique triggers 20 Unique barriers
 226 Total responses 102 Total responses

 96% Percent of participants 92% Percent of participants
 4,4 Mean triggers cited per person 2 Mean barriers cited per person

Table 1: Factors cited as triggers and barriers to customization (Mackay, 1991)

One can compare the decisions about learning and customizing a new
software package to choosing when to invest in a new, depreciable
capital investment. The new software package has a learning curve
associated with it, which is the cost of 'buying' it. For the sake of
discussion, assume that the user has free choice among a number of
available software packages. Each software package 'depreciates' as
other more effective packages become available or as new features are
added that must be learned. When do users switch? At what point does
the cost of learning something new become preferable to using out-of-
date software? These data support the idea that users 'satisfice' (Newell

Responding to cognitive overload 187

& Simon, 1972) rather than optimize. People are busy and switching
takes time. So customizing becomes a mechanism for easing the
transition between old and new software, a set of trade-offs that must be
constantly re-evaluated. With few exceptions, people only customize
when it is worth the trouble and they already know how to make the
desired changes. Users actively take their work context into account
when deciding whether or not to customize. For example, if a manager
must produce a report by 5:00 pm, she is likely to avoid investing in
creating a routine that automates a repetitive procedure, even if it takes
20 minutes to do the procedure by hand. The latter is annoyingly slow,
but predictable, whereas the customization routine is very risky: it may
not work at all and even it does, there is little benefit derived from
turning in the report by 4:30.

Customizations that allow users to continue working as they did
before, without learning new patterns of behavior and customizations
that increase efficiency by performing a commonly-occurring set of
actions with a single command, are the most likely to be considered
worthwhile. People were particularly sensitive to external system
changes that required them to modify their own "automatic" behavior,
such as typing particular keys to perform particular functions. They
were most likely to customize by retrofitting the new system to respond
like the old. Unless the user was bored or just learning the system,
aesthetic or "interesting" customizations were generally avoided.

Patterns of Sharing Customizable Software

Technology developers usually view customizing software as a
solitary task. After all, the goal is to allow individuals to express their
personal preferences in dealing with the technology. Yet this study
indicated that customization is often a highly social phenomenon.
Sharing customizations served as an important method of establishing
and maintaining standard patterns of behavior throughout the
organization. People were clearly overloaded and they looked to their
friends and colleagues for help. Borrowing customizations had
numerous advantages for individual users. They could reduce the time
spent learning how to customize, which increased the time available for
accomplishing actual work. They could also experience how other
people work, find out new ways of doing things and benefit from each
other's innovations.

188 Wendy E. MACKAY

File Name : FIG.net.preorg.lines
Pages : 1

Figure 2: Network of sharing customizations within the organization (Mackay, 1990b).

Figure 2 displays the customization exchange patterns in the
organization, just prior to a re-organization. Circles indicate individuals,
identified by their job category. For example, "A8" is a manager, who
was labeled as the eighth person in the Visual Computing Group.
Clusters of circles indicate groups within the organization, such as User
Services and Administration. Arrows are directional, indicating the
source and recipient of customization files. Note some of these
exchanges involved givers who were proactive, such as when someone
explicitly mailed a customization file to someone else. In other
exchanges, the recipient was proactive, such as when someone found a
useful customization file by looking in someone else's files. This graph
does not indicate the number of exchanges that occurred over time; it
simply shows that at least one exchange occurred. Several of these
exchanges involved a single file that was popular and copied by several
people. For example, D5 had a screen background pattern that many
people copied and D8 had a technique for creating multiple collections
of windows on the screen. In each case, the person gave only that item
to other people.

Responding to cognitive overload 189

Sharing of customization files took two different forms. The first
was relatively anonymous, in which the customizations were either
broadcast to other members of the staff or the file was placed in an
accessible location. People who obtained customizations in this manner
had to be proactive and sufficiently skilled to interpret the
customizations. The second form involved conversations between
people in addition to the exchange of files. In these situations, one
person would attempt to identify the needs of another before suggesting
particular customization files or techniques.

Anonymous sharers: These people made their files available to
everyone and had little idea who used them (or even if they were
useful!). They were almost always technically-skilled programmers who
enjoyed pushing the software to its limits and reacted to peer pressure
to "do neat stuff". Most had created complex sets of customizations that
were of interest primarily to other highly technical people. Because
they were the most technical members of the staff, members of this
group were usually the first to investigate new software packages and
usually set up the default files that would be used by everyone else. This
often caused problems, since their instincts about how best to set up the
technology often did not match the needs of their less-technical
colleagues. These anonymous sharers liked to show off their technical
prowess, but often had difficulty communicating directly with the rest
of the staff.

Translators: These people liked to help their colleagues by making
the software environment easier to use. Although generally less
technically skilled than the programmers, they had far better
communication skills. They translated complex files into simpler ones
in order to provide practical benefits to the recipients. Most of them
understood the basic design of the system and could talk to the
technical staff or borrow their files if necessary. They were more
interested in customizations that solved practical problems than ones
that demonstrated technical brilliance. They often viewed their role as
trying to protect their colleagues who either did not understand or were
simply not interested in learning technical details of the system.
Unfortunately, because they were less technically skilled, some of their
customization files contained errors, which were unknowingly passed
on to their colleagues. Translators appear similar to the "gatekeepers"
identified by Allen (1972) or local heroes identified by Nardi and
Miller (1989). Gatekeepers are highly-skilled individual contributors in
engineering organizations who actively seek technical information

190 Wendy E. MACKAY

outside of the organization. Like translators, they translate the
information into a form that is easier for their internal colleagues to use
and understand. However, the translators in this organization were
unlike gatekeepers in that they were not the most technically-skilled
members in the organization. They were closer to the “local heroes” in
that they did not fill the role all the time; they only acted as translators
when there were people who appeared to need the help. The differences
may stem from the contrast between customization activities, which
occur only when someone needs help getting set up or reacting to an
externally-imposed change, and the on-going need for accessing current
technical information.

"Anonymous sharers" appeared to perform their function
independently of the needs of the individuals of the organization. They
did not react to reorganizations or job changes and generally broadcast
customizations whenever they happened upon something interesting. In
contrast, translators were very much affected by their roles in the
organization. They were much more likely to remember who they gave
files to and why. Most performed the role when the need arose and
stopped when circumstances changed. For example, in the video group,
D4 willingly gave up the role when D3 arrived. Over the course of the
study, each group (except the system programmers) always had one (and
only one) clearly-identifiable person acting as a translator.

Customization and Cognitive Overload

Customizing software was an important mechanism that allowed
members of this organization to deal with the cognitive overload caused
by constant technological change. Certain kinds of customization, such
as retrofitting a new version of the software to act like the previous,
familiar version, proved effective in maintaining a more stable work
environment. Similarly, capturing repeated tasks and automating them
reduced the overload involved in mechanically repeating the task over
and over.

Customization in this organization was a highly social activity.
People learned effective work strategies from each other by copying
their customizations. In many instances, individuals who moved from
one group to another changed their software environments to directly
reflect that of the rest of the members of the group. Even though this, in
the short term, increased the load on the user by forcing him or her to
learn a new way of working, in the long run, it reduced overload by
allowing the user to benefit from the collective experience of his or her

Responding to cognitive overload 191

peers. This implies that research into the cognitive overload syndrome
must take social factors into account when trying to provide tools and
processes to help manage it.

CONCLUSIONS

If we agree that users co-adapt technology, what would it mean to
create software that explicitly supports this process? How can we, in
our role as designers, benefit from the tendency of users to re-interpret
their technology in the context of their own work and to modify it in
ways that we cannot anticipate?

Studies of white collar productivity indicate that the introduction of
computers has been correlated with a decrease in productivity and a
corresponding increase in cognitive overload (Dertouzos et al., 1989).
Although computers offer flexibility and power, productivity gains will
only be achieved if users use the technology effectively. This study
provides evidence that users' co-adaptation of technology provides an
effective mechanism for addressing cognitive overload. The following
design considerations will help users adapt the software to meet their
own needs and reduce the level of cognitive overload.

1. Reflection: Provide users with feedback about the effectiveness of
their use of the technology (including customizations) and provide
opportunities to reflect upon their processes of use.

2. Context: Allow users to encode patterns of behavior and
informally include information about their current work contexts.

3. Sharing: Assume technology use is embedded in a social structure
and provide mechanisms that support sharing and exchange of software,
especially among translators, to encourage innovation and share
effective methods of accomplishing tasks.

Development of reflective software

The X-Windows System is extremely poor at providing users with
mechanisms for reflecting upon their use of the technology. Hidden
customization files did not help; users were left to guess, often
incorrectly, how their behavior affected the system's actions. Software
manufacturers should consider designing software to be reflective.
Reflective software is somewhat different from Zuboff's (1988) notion
of "informating", which provides users with information about the state
of the system. Reflective software should increase the user's awareness
of their personal use of the software. Techniques used to instrument

192 Wendy E. MACKAY

software for feedback to user interface researchers may be useful here,
particularly those that summarize behavior. However, presentation is
important: raw keystroke logs are unlikely to help. Since most people
do not spend much time evaluating their own patterns of use, these
features may be of more help to translators than regular users. However,
given the influence of these people on the rest of the organization,
simply helping translators may be sufficient to significantly increase
the productive use of customization. Users should be able to use these
reflections or traces of their behavior in order to organize their own
behavior in more productive ways.

Help users capture and customize work context

As in the Information Lens study mentioned in the introduction,
some users created multiple versions of certain customizations that
could be executed at different times as specified by the user. This
provided a mechanism for users to create context-dependent sets of
customizations without having to articulate in precise terms the
conditions under which each was appropriate. For example, users
created different window layouts, with different applications running,
for use when performing different jobs.

These studies demonstrate that 1) users find it very useful to
organize collections of tasks together that are appropriate in different
work contexts and 2) explicitly articulating exactly what the context is
is not only difficult, but sometimes impossible. Some of the most
interesting user innovations provided users with mechanisms for stating
these different context-dependent states without making the actual
states explicit. Technology developers should consider how to support
this need. The first step is to provide an easy mechanism for identifying
patterns of behavior or collections of functions and allowing them to be
accessed as a group. The second step is to allow users to run these
collections independently, either at the times the user decides are
appropriate or when certain events trigger the activity. Users in both
studies invented a number of different ways of encoding these patterns
and used them extensively.

Provide support for sharing customizations

Users actively exchanged customization files and electronic mail
rules with each other. Technology developers should consider the
effects of sharing customizations on the use of their software over
time. Because most use of customizations is not reflective, i.e. users do

Responding to cognitive overload 193

not usually examine which customizations are truly effective and which
are not, patterns of use do not necessarily improve over time. Software
designers should consider how to help the people who produce
customizations for their peers by letting them effectively share their
files. The quality of the examples they create will affect the overall
perception and use of the manufacturer's software. Specific decisions
about the design of customization features also significantly affects
how the software is used. For example, providing a customization
capability via a "direct manipulation" interface, with no accessible
record of it, may make it easier to modify individual features but harder
to share them, because users might not understand the form in which the
customizations are stored nor be able to gain access to them. Users
need to be able to borrow and apply patterns of behavior created by
others, and to modify them for their own purposes.

Co-Adaptation

This study involved detailed observations of users who found
themselves in a state of cognitive overload. This research illustrates
ways in which people have successfully co-adapted, adjusting their own
behavior to more effectively use the technology, i.e. adapting to it, and
at the same time, re-interpreting and changing the technology to meet
their current needs, i.e. adapting it. Participants in these studies
reported how both strategies were able to help them reduce their
perceived state of overload and help develop more effective ways of
working. Technology designers should consider first grounding design
in existing, successful work practices, and then exploring how to
augment those work practices with new technology, under the user's on-
going control. This approach permits users to reflect upon their work
activities, identify situations of overload, and explicitly adapt the
technology for their own purposes, with the aid of their colleagues, in
order to reduce cognitive overload and help manage the complexity of
the workplace.

References

Allen, T.J. (1972). Communication Networks in R&D Laboratories. R&D
Management, pp. 14-21.

Barley, S. R. (1986). Technology as an Occasion for Structuring Evidence from
Observations of CT Scanners and the Social Order of Radiology
Departments. Administrative Science Quarterly, 31, pp. 77-108.

194 Wendy E. MACKAY

Champine, G. (1987). Project Athena as a Next Generation Educational

Computing System. ASEE Annual Conference Proceedings. ASEE.
Chapanis, A. (1969). Research Techniques in Human Engineering. Baltimore,

Maryland: John Hopkins Press.
Dertouzos, M., Lester, R. and Solow, R. (1989). Made in America: Regaining

the Productive Edge. Cambridge, Massachusetts: The MIT Press.
Eveland, J. and Bikson, T. (September 1988). Work Group Structures and

Computer Support: A Field Experiment. Proceedings on the Conference for
Computer-Supported Cooperative Work, pp. 39-51. Portland, Oregon.

Giddens, A. (1984). The Constitution of Society: Outline of the Theory of
Structure. Berkeley, California: University of California Press.

Lampe, D.R. (February 1988). The MIT X Consortium. The MIT Report.
Landauer, T. (1995) The Trouble with Computers, Cambridge, MA: MIT

Press.
Lovelock, J.E. (1979). Gaia: A New Look at Life on Earth. Oxford, England:

Oxford University Press.
Mackay, W.E. (1988). Diversity in the Use of Electronic Mail: A Preliminary

Inquiry. ACM Transactions on Office Information Systems, 6(4).
Mackay, W.E. (1990a). Users and Customizable Software: A Co-Adaptive

Phenomenon, Massachusetts Institute of Technology.
Mackay, W.E. (1990b). Patterns of Sharing Customizable Software. In

Proceedings of ACM CSCW '90: Conference on Computer-Supported
Cooperative Work. Los Angeles, California: ACM.

Mackay, W.E. (1991) Triggers and barriers to customizing software. In
Proceedings of ACM CHI '91 Human Factors in Computing Systems.
New Orleans, Louisianna: ACM/SIGCHI.

Margulis, L. (1986) Microcosmos. NJ: Summit Books.
Nardi, B. and Miller, J. (October 1990). Twinkling lights and nested loops:

Distributed problem solving and spreadsheet development. Conference on
Computer-Supported Cooperative Work. Los Angeles, California: ACM.

Newell, A. and Simon, H. (1972). Human Problem Solving. Englewood Cliffs,
NJ: Prentice-Hall, Inc.

Norman, D.A. (November 1981). The Trouble With Unix: The User Interface is
Horrid. Datamation, pp. 139-150.

Orlikowski, W. (1992). The Duality of Technology: Rethinking the concept
of technology in organizations. Organization Science. 3(3), pp. 398-427.

Sproull, L. & Kiesler, S. (1986). Reducing Social Context Cues: Electronic Mail
in Organizational Communication. Management Science, 32(11), pp. 1492-
1512.

Suchman, L. (1987). Plans and Situated Actions. Cambridge, England:
Cambridge University Press.

Responding to cognitive overload 195

Suchman, L. and Wynn, E. (1984) Procedures and problems in the office.

Office: Technology and People. Vol. 2, pp. 133-154.
Turkle, S. (1984). The Second Self. New York, New York: Simon and

Schuster.
von Hippel, E. (1988). The Sources of Innovation. New York: Oxford

University Press.
Zuboff, S. (1988). In the Age of the Smart Machine. New York: Basic Books.

